

Reading nginx
CHANGES together
Maxim Dounin
NGINX

CHANGES

�3

nginx versions

�4

• 1.11.x, 1.13.x, 1.15.x - mainline
◦ Odd numbers

◦ New features are developed here

◦ Current version - 1.15.5

• 1.12.x, 1.14.x - stable
◦ Even numbers

◦ New stable branch every year

◦ Only critical fixes, stable API

◦ Current stable version - 1.14.0

Lies, damned lies, and statistics

�5

1.14.x - 37.0%  
1.12.x - 18.6%  
1.10.x - 13.6%  
1.13.x - 8.8%  
...  
1.15.x - 1.2%

�6

• Changes in 1.13.x
◦ Available in 1.14.0, latest stable version

• Changes in 1.15.x
◦ Available in 1.15.5, latest mainline version

1.13.x
Basic TLS 1.3 support, gRPC proxy module, mirror
module to enable traffic investigation, HTTP/2 push,
monotonic timers, PROXY protocol version 2, and more.
Available in 1.14.0 stable.

TLS 1.3

�8

• RFC 8446
◦ Published in August 2018

• 1 RTT full handshake
◦ Not guaranteed, but usually

◦ Instead of 2 RTT in previous versions

• 0 RTT / early data
◦ No reply protection

◦ Needs special support - not yet in 1.13.x (but in 1.15.x)

TLS 1.3 basic support

�9

server {  
 listen 443 ssl;  
 
 ssl_protocols TLSv1.1 TLSv1.2 TLSv1.3;  
 
 ssl_certificate test.crt;  
 ssl_certificate test.key;  
}  

• Not enabled by default

• Works with OpenSSL 1.1.1
• Only basic support (no early data in 1.13.x)

TLS 1.3 caveats

�10

• Might not work with your browser
◦ OpenSSL 1.1.1 implements RFC 8446

◦ Chrome 69 - draft 28 or draft 23

◦ Firefox 62 - draft 28

◦ Safari on macOS High Sierra - draft 18, disabled by default

• Can be easily broken by incorrect configuration
◦ ssl_ecdh_curve secp384r1;

Other SSL improvements

�11

• Renegotiation with backend servers
◦ Disabled due to CVE-2009-3555 - no longer relevant

◦ Some backends require renegotiation

• The $ssl_client_escaped_cert variable
◦ Simplifies passing the certificate to backends

• Now tcp_nodelay activated before SSL handshake
◦ For TLS 1.3, triggers "Nagle vs. Delayed Ack" problem

Mirror

�12

location / {  
 mirror /mirror;  
 proxy_pass http://real-backend;  
}  
 
location /mirror {  
 proxy_pass http://mirror-backend;  
 proxy_set_header X-Original-URI $request_uri;  
}

http://real-backend
http://mirror-backend

Mirror: details

�13

• Uses background subrequests
◦ Introduced for proxy_cache_background_update, rewritten for mirror

• Subrequests are executed in parallel with main request
◦ Slow subrequest can delay main request

• The request body is read by default
◦ mirror_request_body off;

Mirror: development details

�14

• Fixed an old problem with proxying subreqests with bodies
◦ An optimization: request body file closed when response header is received

◦ Caused problems with SSI and POST requests

◦ Now switched off with subrequests

• New request processing phase: precontent
◦ Used by try_files and mirror

◦ Can be used for your own modules

HTTP/2 server push

�15

• An HTTP/2 protocol feature

• May improve website latency when used properly

• But can make you site slower

• And it will in most cases
◦ “Chrome's view on Push" by Brad Lassey,  

https://github.com/httpwg/wg-materials/blob/gh-pages/ietf102/chrome_push.pdf

HTTP/2 server push

�16

How to:
 
 http2_push /css/main.css;  

Push "Link: rel=preload" on proxying:
 
 http2_push_preload on;  

Use with care

gRPC proxy

�17

• Proxying and balancing gRPC backends

• Uses HTTP/2 but there are nuances
◦ gRPC requires trailers support

• Designed specially for gRPC
◦ No request buffering, no response buffering

• No multiplexing

• Persistent connections with upstream keepalive

gRPC proxy: example

�18

server {  
 listen 50051 http2;  
 
 location / {  
 grpc_pass 127.0.0.2:50051;  
 }  
}

gRPC proxy: keepalive

�19

upstream backend {  
 server 127.0.0.2:50051;  
 server 127.0.0.3:50051;  
 keepalive 10;  
}  
 
server {  
 listen 50051 http2;  
 
 location / {  
 grpc_pass backend;  
 }  
}

Misc

�20

• CPU affinity on DragonFly BSD

• Improved CPU cache line size detection
◦ sysconf(_SC_LEVEL1_DCACHE_LINESIZE)

• Better compatibility with optimized zlib variants

• Socket buffers tuning in mail and stream modules

Misc 2

�21

• Hostnames in set_real_ip_from

• Logging of PID of the process which sent the signal

• Support for 308 redirections in "return" and "error_page"

• Now nginx preserves CAP_NET_RAW on Linux
◦ root not needed with "proxy_bind ... transparent;"

• $ssl_preread_alpn_protocols in the stream module

Misc 3

�22

• Escaping can be disabled in access logs
◦ log_format … escape=none …

• Arbitrary subrequests in memory
◦ <!—#include virtual="/file" set="one" -->

◦ Previously proxying only, now static files too

Misc 4

�23

• Range requests from an empty file now return 200
◦ Previously 416, but 200 is also valid and better for the slice module

• Monotonic timers
◦ clock_gettime(CLOCK_MONOTONIC)

◦ No more timeouts on system time changes

• PROXY protocol version 2
◦ Amazon NLB

�24

All these features where developed in 1.13.x branch.

Available in 1.14.x stable.

1.15.x
TLS 1.3, UDP sessions, random
balancer, and more.  
Things we are working on.

TLS 1.3

�26

• Fixed backend session reuse

• Now works with BoringSSL

• Early data support

TLS 1.3 early data

�27

How to use early data:
 
 ssl_protocols TLSv1.1 TLSv1.2 TLSv1.3;  
 ssl_early_data on;  

• No replay protection
◦ Not at all in BoringSSL

◦ The one in OpenSSL breaks session reuse, so disabled

• The $ssl_early_data variable
◦ Early-Data header, RFC 8470

SSL: better configuration checking

�28

• Missing certificates for "listen ... ssl" now detected 
 
server {  
 listen 443 ssl default;  
 
 # no ssl_certificate here  
}

SSL: better configuration checking

�29

• The "ssl" directive deprecated in favor of "listen ... ssl" 
 
server {  
 listen 80;  
 listen 443;  
 
 ssl on;  
 
 ...  
}

Stream: UDP sessions

�30

• UDP proxying assumed only 1 packet from client
◦ Did not work for complex UDP-based protocols, such as DTLS

• Now tries to lookup an existing session
◦ Can handle DTLS

◦ Much better speed when there are many packets

• Only works within a worker
◦ Single worker or "listen ... reuseport"

• Now "listen ... reuseport" works on FreeBSD 12
◦ SO_REUSEPORT_LB

Stream: $ssl_preread_protocol

�31

stream {  
 map $ssl_preread_protocol $u {  
 "" 127.0.0.1:8443;  
 default 127.0.0.1:22;  
 }  
 
 server {  
 listen 443;  
 proxy_pass $u;  
 ssl_preread on;  
 }  
}

New balancer: random

�32

upstream {  
 random;  
 server 192.0.2.1;  
 server 192.0.2.2;  
 server 192.0.2.3;  
}  

• Faster than round-robin with many backends
• The same quality with many frontends

New balancer: random two

�33

upstream {  
 random two;  
 server 192.0.2.1;  
 server 192.0.2.2;  
 server 192.0.2.3;  
}  

• Two random choices, best of the two is used
• Almost least_conn, but faster

Misc

�34

• Now "reset_timedout_connection" applies to "return 444"
◦ Saves kernel memory and sockets

• Upstream keepalive limits
◦ “keepalive_timeout” - prevents a race with connection close by a backend

◦ “keepalive_requests" - ensures connection-specific allocations will be freed

�35

All these features where introduced in 1.15.x branch.

More are being worked on now.

Maxim Dounin 
mdounin@mdounin.ru

Thank you! 
Questions?

mailto:mdounin@mdounin.ru

