view src/core/ngx_slab.h @ 6982:ac9b1df5b246

SSL: disabled renegotiation detection in client mode. CVE-2009-3555 is no longer relevant and mitigated by the renegotiation info extension (secure renegotiation). On the other hand, unexpected renegotiation still introduces potential security risks, and hence we do not allow renegotiation on the server side, as we never request renegotiation. On the client side the situation is different though. There are backends which explicitly request renegotiation, and disabled renegotiation introduces interoperability problems. This change allows renegotiation on the client side, and fixes interoperability problems as observed with such backends (ticket #872). Additionally, with TLSv1.3 the SSL_CB_HANDSHAKE_START flag is currently set by OpenSSL when receiving a NewSessionTicket message, and was detected by nginx as a renegotiation attempt. This looks like a bug in OpenSSL, though this change also allows better interoperability till the problem is fixed.
author Sergey Kandaurov <pluknet@nginx.com>
date Tue, 18 Apr 2017 16:08:44 +0300
parents 6e757036e588
children 69f9ee0342db
line wrap: on
line source


/*
 * Copyright (C) Igor Sysoev
 * Copyright (C) Nginx, Inc.
 */


#ifndef _NGX_SLAB_H_INCLUDED_
#define _NGX_SLAB_H_INCLUDED_


#include <ngx_config.h>
#include <ngx_core.h>


typedef struct ngx_slab_page_s  ngx_slab_page_t;

struct ngx_slab_page_s {
    uintptr_t         slab;
    ngx_slab_page_t  *next;
    uintptr_t         prev;
};


typedef struct {
    ngx_uint_t        total;
    ngx_uint_t        used;

    ngx_uint_t        reqs;
    ngx_uint_t        fails;
} ngx_slab_stat_t;


typedef struct {
    ngx_shmtx_sh_t    lock;

    size_t            min_size;
    size_t            min_shift;

    ngx_slab_page_t  *pages;
    ngx_slab_page_t  *last;
    ngx_slab_page_t   free;

    ngx_slab_stat_t  *stats;
    ngx_uint_t        pfree;

    u_char           *start;
    u_char           *end;

    ngx_shmtx_t       mutex;

    u_char           *log_ctx;
    u_char            zero;

    unsigned          log_nomem:1;

    void             *data;
    void             *addr;
} ngx_slab_pool_t;


void ngx_slab_init(ngx_slab_pool_t *pool);
void *ngx_slab_alloc(ngx_slab_pool_t *pool, size_t size);
void *ngx_slab_alloc_locked(ngx_slab_pool_t *pool, size_t size);
void *ngx_slab_calloc(ngx_slab_pool_t *pool, size_t size);
void *ngx_slab_calloc_locked(ngx_slab_pool_t *pool, size_t size);
void ngx_slab_free(ngx_slab_pool_t *pool, void *p);
void ngx_slab_free_locked(ngx_slab_pool_t *pool, void *p);


#endif /* _NGX_SLAB_H_INCLUDED_ */