comparison src/core/ngx_md5.c @ 622:8dc007eddbcf NGINX_1_0_1

nginx 1.0.1 *) Change: now the "split_clients" directive uses MurmurHash2 algorithm because of better distribution. Thanks to Oleg Mamontov. *) Change: now long strings starting with zero are not considered as false values. Thanks to Maxim Dounin. *) Change: now nginx uses a default listen backlog value 511 on Linux. *) Feature: the $upstream_... variables may be used in the SSI and perl modules. *) Bugfix: now nginx limits better disk cache size. Thanks to Oleg Mamontov. *) Bugfix: a segmentation fault might occur while parsing incorrect IPv4 address; the bug had appeared in 0.9.3. Thanks to Maxim Dounin. *) Bugfix: nginx could not be built by gcc 4.6 without --with-debug option. *) Bugfix: nginx could not be built on Solaris 9 and earlier; the bug had appeared in 0.9.3. Thanks to Dagobert Michelsen. *) Bugfix: $request_time variable had invalid values if subrequests were used; the bug had appeared in 0.8.47. Thanks to Igor A. Valcov.
author Igor Sysoev <http://sysoev.ru>
date Tue, 03 May 2011 00:00:00 +0400
parents
children 83b58b182b76
comparison
equal deleted inserted replaced
621:00d13b6d4ebd 622:8dc007eddbcf
1
2 /*
3 * An internal implementation, based on Alexander Peslyak's
4 * public domain implementation:
5 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
6 * It is not expected to be optimal and is used only
7 * if no MD5 implementation was found in system.
8 */
9
10
11 #include <ngx_config.h>
12 #include <ngx_core.h>
13 #include <ngx_md5.h>
14
15
16 #if !(NGX_HAVE_MD5)
17
18 static const u_char *ngx_md5_body(ngx_md5_t *ctx, const u_char *data,
19 size_t size);
20
21
22 void
23 ngx_md5_init(ngx_md5_t *ctx)
24 {
25 ctx->a = 0x67452301;
26 ctx->b = 0xefcdab89;
27 ctx->c = 0x98badcfe;
28 ctx->d = 0x10325476;
29
30 ctx->bytes = 0;
31 }
32
33
34 void
35 ngx_md5_update(ngx_md5_t *ctx, const u_char *data, size_t size)
36 {
37 size_t used, free;
38
39 used = ctx->bytes & 0x3f;
40 ctx->bytes += size;
41
42 if (used) {
43 free = 64 - used;
44
45 if (size < free) {
46 ngx_memcpy(&ctx->buffer[used], data, size);
47 return;
48 }
49
50 ngx_memcpy(&ctx->buffer[used], data, free);
51 data = (u_char *)data + free;
52 size -= free;
53 (void) ngx_md5_body(ctx, ctx->buffer, 64);
54 }
55
56 if (size >= 64) {
57 data = ngx_md5_body(ctx, data, size & ~(size_t) 0x3f);
58 size &= 0x3f;
59 }
60
61 ngx_memcpy(ctx->buffer, data, size);
62 }
63
64
65 void
66 ngx_md5_final(u_char result[16], ngx_md5_t *ctx)
67 {
68 size_t used, free;
69
70 used = ctx->bytes & 0x3f;
71
72 ctx->buffer[used++] = 0x80;
73
74 free = 64 - used;
75
76 if (free < 8) {
77 ngx_memzero(&ctx->buffer[used], free);
78 (void) ngx_md5_body(ctx, ctx->buffer, 64);
79 used = 0;
80 free = 64;
81 }
82
83 ngx_memzero(&ctx->buffer[used], free - 8);
84
85 ctx->bytes <<= 3;
86 ctx->buffer[56] = ctx->bytes;
87 ctx->buffer[57] = ctx->bytes >> 8;
88 ctx->buffer[58] = ctx->bytes >> 16;
89 ctx->buffer[59] = ctx->bytes >> 24;
90 ctx->buffer[60] = ctx->bytes >> 32;
91 ctx->buffer[61] = ctx->bytes >> 40;
92 ctx->buffer[62] = ctx->bytes >> 48;
93 ctx->buffer[63] = ctx->bytes >> 56;
94
95 (void) ngx_md5_body(ctx, ctx->buffer, 64);
96
97 result[0] = ctx->a;
98 result[1] = ctx->a >> 8;
99 result[2] = ctx->a >> 16;
100 result[3] = ctx->a >> 24;
101 result[4] = ctx->b;
102 result[5] = ctx->b >> 8;
103 result[6] = ctx->b >> 16;
104 result[7] = ctx->b >> 24;
105 result[8] = ctx->c;
106 result[9] = ctx->c >> 8;
107 result[10] = ctx->c >> 16;
108 result[11] = ctx->c >> 24;
109 result[12] = ctx->d;
110 result[13] = ctx->d >> 8;
111 result[14] = ctx->d >> 16;
112 result[15] = ctx->d >> 24;
113
114 ngx_memzero(ctx, sizeof(*ctx));
115 }
116
117
118 /*
119 * The basic MD5 functions.
120 *
121 * F and G are optimized compared to their RFC 1321 definitions for
122 * architectures that lack an AND-NOT instruction, just like in
123 * Colin Plumb's implementation.
124 */
125
126 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
127 #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
128 #define H(x, y, z) ((x) ^ (y) ^ (z))
129 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
130
131 /*
132 * The MD5 transformation for all four rounds.
133 */
134
135 #define STEP(f, a, b, c, d, x, t, s) \
136 (a) += f((b), (c), (d)) + (x) + (t); \
137 (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
138 (a) += (b)
139
140 /*
141 * SET() reads 4 input bytes in little-endian byte order and stores them
142 * in a properly aligned word in host byte order.
143 *
144 * The check for little-endian architectures that tolerate unaligned
145 * memory accesses is just an optimization. Nothing will break if it
146 * does not work.
147 */
148
149 #if (NGX_HAVE_LITTLE_ENDIAN && NGX_HAVE_NONALIGNED)
150
151 #define SET(n) (*(uint32_t *) &p[n * 4])
152 #define GET(n) (*(uint32_t *) &p[n * 4])
153
154 #else
155
156 #define SET(n) \
157 (block[n] = \
158 (uint32_t) p[n * 4] | \
159 ((uint32_t) p[n * 4 + 1] << 8) | \
160 ((uint32_t) p[n * 4 + 2] << 16) | \
161 ((uint32_t) p[n * 4 + 3] << 24))
162
163 #define GET(n) block[n]
164
165 #endif
166
167
168 /*
169 * This processes one or more 64-byte data blocks, but does not update
170 * the bit counters. There are no alignment requirements.
171 */
172
173 static const u_char *
174 ngx_md5_body(ngx_md5_t *ctx, const u_char *data, size_t size)
175 {
176 uint32_t a, b, c, d;
177 uint32_t saved_a, saved_b, saved_c, saved_d;
178 const u_char *p;
179 #if !(NGX_HAVE_LITTLE_ENDIAN && NGX_HAVE_NONALIGNED)
180 uint32_t block[16];
181 #endif
182
183 p = data;
184
185 a = ctx->a;
186 b = ctx->b;
187 c = ctx->c;
188 d = ctx->d;
189
190 do {
191 saved_a = a;
192 saved_b = b;
193 saved_c = c;
194 saved_d = d;
195
196 /* Round 1 */
197
198 STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7);
199 STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12);
200 STEP(F, c, d, a, b, SET(2), 0x242070db, 17);
201 STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22);
202 STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7);
203 STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12);
204 STEP(F, c, d, a, b, SET(6), 0xa8304613, 17);
205 STEP(F, b, c, d, a, SET(7), 0xfd469501, 22);
206 STEP(F, a, b, c, d, SET(8), 0x698098d8, 7);
207 STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12);
208 STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17);
209 STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22);
210 STEP(F, a, b, c, d, SET(12), 0x6b901122, 7);
211 STEP(F, d, a, b, c, SET(13), 0xfd987193, 12);
212 STEP(F, c, d, a, b, SET(14), 0xa679438e, 17);
213 STEP(F, b, c, d, a, SET(15), 0x49b40821, 22);
214
215 /* Round 2 */
216
217 STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5);
218 STEP(G, d, a, b, c, GET(6), 0xc040b340, 9);
219 STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14);
220 STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20);
221 STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5);
222 STEP(G, d, a, b, c, GET(10), 0x02441453, 9);
223 STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14);
224 STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20);
225 STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5);
226 STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9);
227 STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14);
228 STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20);
229 STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5);
230 STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9);
231 STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14);
232 STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20);
233
234 /* Round 3 */
235
236 STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4);
237 STEP(H, d, a, b, c, GET(8), 0x8771f681, 11);
238 STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16);
239 STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23);
240 STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4);
241 STEP(H, d, a, b, c, GET(4), 0x4bdecfa9, 11);
242 STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16);
243 STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23);
244 STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4);
245 STEP(H, d, a, b, c, GET(0), 0xeaa127fa, 11);
246 STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16);
247 STEP(H, b, c, d, a, GET(6), 0x04881d05, 23);
248 STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4);
249 STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11);
250 STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16);
251 STEP(H, b, c, d, a, GET(2), 0xc4ac5665, 23);
252
253 /* Round 4 */
254
255 STEP(I, a, b, c, d, GET(0), 0xf4292244, 6);
256 STEP(I, d, a, b, c, GET(7), 0x432aff97, 10);
257 STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15);
258 STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21);
259 STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6);
260 STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10);
261 STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15);
262 STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21);
263 STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6);
264 STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10);
265 STEP(I, c, d, a, b, GET(6), 0xa3014314, 15);
266 STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21);
267 STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6);
268 STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10);
269 STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15);
270 STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21);
271
272 a += saved_a;
273 b += saved_b;
274 c += saved_c;
275 d += saved_d;
276
277 p += 64;
278
279 } while (size -= 64);
280
281 ctx->a = a;
282 ctx->b = b;
283 ctx->c = c;
284 ctx->d = d;
285
286 return p;
287 }
288
289 #endif