view src/event/ngx_event_pipe.h @ 8622:183275308d9a quic

QUIC: fixed address validation issues in a new connection. The client address validation didn't complete with a valid token, which was broken after packet processing refactoring in d0d3fc0697a0. An invalid or expired token was treated as a connection error. Now we proceed as outlined in draft-ietf-quic-transport-32, section 8.1.3 "Address Validation for Future Connections" below, which is unlike validating the client address using Retry packets. When a server receives an Initial packet with an address validation token, it MUST attempt to validate the token, unless it has already completed address validation. If the token is invalid then the server SHOULD proceed as if the client did not have a validated address, including potentially sending a Retry. The connection is now closed in this case on internal errors only.
author Sergey Kandaurov <pluknet@nginx.com>
date Mon, 02 Nov 2020 17:38:11 +0000
parents adc2414856b1
children
line wrap: on
line source


/*
 * Copyright (C) Igor Sysoev
 * Copyright (C) Nginx, Inc.
 */


#ifndef _NGX_EVENT_PIPE_H_INCLUDED_
#define _NGX_EVENT_PIPE_H_INCLUDED_


#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_event.h>


typedef struct ngx_event_pipe_s  ngx_event_pipe_t;

typedef ngx_int_t (*ngx_event_pipe_input_filter_pt)(ngx_event_pipe_t *p,
                                                    ngx_buf_t *buf);
typedef ngx_int_t (*ngx_event_pipe_output_filter_pt)(void *data,
                                                     ngx_chain_t *chain);


struct ngx_event_pipe_s {
    ngx_connection_t  *upstream;
    ngx_connection_t  *downstream;

    ngx_chain_t       *free_raw_bufs;
    ngx_chain_t       *in;
    ngx_chain_t      **last_in;

    ngx_chain_t       *writing;

    ngx_chain_t       *out;
    ngx_chain_t       *free;
    ngx_chain_t       *busy;

    /*
     * the input filter i.e. that moves HTTP/1.1 chunks
     * from the raw bufs to an incoming chain
     */

    ngx_event_pipe_input_filter_pt    input_filter;
    void                             *input_ctx;

    ngx_event_pipe_output_filter_pt   output_filter;
    void                             *output_ctx;

#if (NGX_THREADS || NGX_COMPAT)
    ngx_int_t                       (*thread_handler)(ngx_thread_task_t *task,
                                                      ngx_file_t *file);
    void                             *thread_ctx;
    ngx_thread_task_t                *thread_task;
#endif

    unsigned           read:1;
    unsigned           cacheable:1;
    unsigned           single_buf:1;
    unsigned           free_bufs:1;
    unsigned           upstream_done:1;
    unsigned           upstream_error:1;
    unsigned           upstream_eof:1;
    unsigned           upstream_blocked:1;
    unsigned           downstream_done:1;
    unsigned           downstream_error:1;
    unsigned           cyclic_temp_file:1;
    unsigned           aio:1;

    ngx_int_t          allocated;
    ngx_bufs_t         bufs;
    ngx_buf_tag_t      tag;

    ssize_t            busy_size;

    off_t              read_length;
    off_t              length;

    off_t              max_temp_file_size;
    ssize_t            temp_file_write_size;

    ngx_msec_t         read_timeout;
    ngx_msec_t         send_timeout;
    ssize_t            send_lowat;

    ngx_pool_t        *pool;
    ngx_log_t         *log;

    ngx_chain_t       *preread_bufs;
    size_t             preread_size;
    ngx_buf_t         *buf_to_file;

    size_t             limit_rate;
    time_t             start_sec;

    ngx_temp_file_t   *temp_file;

    /* STUB */ int     num;
};


ngx_int_t ngx_event_pipe(ngx_event_pipe_t *p, ngx_int_t do_write);
ngx_int_t ngx_event_pipe_copy_input_filter(ngx_event_pipe_t *p, ngx_buf_t *buf);
ngx_int_t ngx_event_pipe_add_free_buf(ngx_event_pipe_t *p, ngx_buf_t *b);


#endif /* _NGX_EVENT_PIPE_H_INCLUDED_ */