view src/event/ngx_event_pipe.h @ 8106:8852f39311de

Fixed segfault when switching off master process during upgrade. Binary upgrades are not supported without master process, but it is, however, possible, that nginx running with master process is asked to upgrade binary, and the configuration file as available on disk at this time includes "master_process off;". If this happens, listening sockets inherited from the previous binary will have ls[i].previous set. But the old cycle on initial process startup, including startup after binary upgrade, is destroyed by ngx_init_cycle() once configuration parsing is complete. As a result, an attempt to dereference ls[i].previous in ngx_event_process_init() accesses already freed memory. Fix is to avoid looking into ls[i].previous if the old cycle is already freed. With this change it is also no longer needed to clear ls[i].previous in worker processes, so the relevant code was removed.
author Maxim Dounin <mdounin@mdounin.ru>
date Wed, 23 Nov 2022 23:48:53 +0300
parents adc2414856b1
children
line wrap: on
line source


/*
 * Copyright (C) Igor Sysoev
 * Copyright (C) Nginx, Inc.
 */


#ifndef _NGX_EVENT_PIPE_H_INCLUDED_
#define _NGX_EVENT_PIPE_H_INCLUDED_


#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_event.h>


typedef struct ngx_event_pipe_s  ngx_event_pipe_t;

typedef ngx_int_t (*ngx_event_pipe_input_filter_pt)(ngx_event_pipe_t *p,
                                                    ngx_buf_t *buf);
typedef ngx_int_t (*ngx_event_pipe_output_filter_pt)(void *data,
                                                     ngx_chain_t *chain);


struct ngx_event_pipe_s {
    ngx_connection_t  *upstream;
    ngx_connection_t  *downstream;

    ngx_chain_t       *free_raw_bufs;
    ngx_chain_t       *in;
    ngx_chain_t      **last_in;

    ngx_chain_t       *writing;

    ngx_chain_t       *out;
    ngx_chain_t       *free;
    ngx_chain_t       *busy;

    /*
     * the input filter i.e. that moves HTTP/1.1 chunks
     * from the raw bufs to an incoming chain
     */

    ngx_event_pipe_input_filter_pt    input_filter;
    void                             *input_ctx;

    ngx_event_pipe_output_filter_pt   output_filter;
    void                             *output_ctx;

#if (NGX_THREADS || NGX_COMPAT)
    ngx_int_t                       (*thread_handler)(ngx_thread_task_t *task,
                                                      ngx_file_t *file);
    void                             *thread_ctx;
    ngx_thread_task_t                *thread_task;
#endif

    unsigned           read:1;
    unsigned           cacheable:1;
    unsigned           single_buf:1;
    unsigned           free_bufs:1;
    unsigned           upstream_done:1;
    unsigned           upstream_error:1;
    unsigned           upstream_eof:1;
    unsigned           upstream_blocked:1;
    unsigned           downstream_done:1;
    unsigned           downstream_error:1;
    unsigned           cyclic_temp_file:1;
    unsigned           aio:1;

    ngx_int_t          allocated;
    ngx_bufs_t         bufs;
    ngx_buf_tag_t      tag;

    ssize_t            busy_size;

    off_t              read_length;
    off_t              length;

    off_t              max_temp_file_size;
    ssize_t            temp_file_write_size;

    ngx_msec_t         read_timeout;
    ngx_msec_t         send_timeout;
    ssize_t            send_lowat;

    ngx_pool_t        *pool;
    ngx_log_t         *log;

    ngx_chain_t       *preread_bufs;
    size_t             preread_size;
    ngx_buf_t         *buf_to_file;

    size_t             limit_rate;
    time_t             start_sec;

    ngx_temp_file_t   *temp_file;

    /* STUB */ int     num;
};


ngx_int_t ngx_event_pipe(ngx_event_pipe_t *p, ngx_int_t do_write);
ngx_int_t ngx_event_pipe_copy_input_filter(ngx_event_pipe_t *p, ngx_buf_t *buf);
ngx_int_t ngx_event_pipe_add_free_buf(ngx_event_pipe_t *p, ngx_buf_t *b);


#endif /* _NGX_EVENT_PIPE_H_INCLUDED_ */