view src/core/ngx_cpuinfo.c @ 9112:d59277dd3d8c

QUIC: fixed post-close use-after-free. Previously, ngx_quic_close_connection() could be called in a way that QUIC connection was accessed after the call. In most cases the connection is not closed right away, but close timeout is scheduled. However, it's not always the case. Also, if the close process started earlier for a different reason, calling ngx_quic_close_connection() may actually close the connection. The connection object should not be accessed after that. Now, when possible, return statement is added to eliminate post-close connection object access. In other places ngx_quic_close_connection() is substituted with posting close event. Also, the new way of closing connection in ngx_quic_stream_cleanup_handler() fixes another problem in this function. Previously it passed stream connection instead of QUIC connection to ngx_quic_close_connection(). This could result in incomplete connection shutdown. One consequence of that could be that QUIC streams were freed without shutting down their application contexts. This could result in another use-after-free. Found by Coverity (CID 1530402).
author Roman Arutyunyan <arut@nginx.com>
date Mon, 22 May 2023 15:59:42 +0400
parents d620f497c50f
children
line wrap: on
line source


/*
 * Copyright (C) Igor Sysoev
 * Copyright (C) Nginx, Inc.
 */


#include <ngx_config.h>
#include <ngx_core.h>


#if (( __i386__ || __amd64__ ) && ( __GNUC__ || __INTEL_COMPILER ))


static ngx_inline void ngx_cpuid(uint32_t i, uint32_t *buf);


#if ( __i386__ )

static ngx_inline void
ngx_cpuid(uint32_t i, uint32_t *buf)
{

    /*
     * we could not use %ebx as output parameter if gcc builds PIC,
     * and we could not save %ebx on stack, because %esp is used,
     * when the -fomit-frame-pointer optimization is specified.
     */

    __asm__ (

    "    mov    %%ebx, %%esi;  "

    "    cpuid;                "
    "    mov    %%eax, (%1);   "
    "    mov    %%ebx, 4(%1);  "
    "    mov    %%edx, 8(%1);  "
    "    mov    %%ecx, 12(%1); "

    "    mov    %%esi, %%ebx;  "

    : : "a" (i), "D" (buf) : "ecx", "edx", "esi", "memory" );
}


#else /* __amd64__ */


static ngx_inline void
ngx_cpuid(uint32_t i, uint32_t *buf)
{
    uint32_t  eax, ebx, ecx, edx;

    __asm__ (

        "cpuid"

    : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (i) );

    buf[0] = eax;
    buf[1] = ebx;
    buf[2] = edx;
    buf[3] = ecx;
}


#endif


/* auto detect the L2 cache line size of modern and widespread CPUs */

void
ngx_cpuinfo(void)
{
    u_char    *vendor;
    uint32_t   vbuf[5], cpu[4], model;

    vbuf[0] = 0;
    vbuf[1] = 0;
    vbuf[2] = 0;
    vbuf[3] = 0;
    vbuf[4] = 0;

    ngx_cpuid(0, vbuf);

    vendor = (u_char *) &vbuf[1];

    if (vbuf[0] == 0) {
        return;
    }

    ngx_cpuid(1, cpu);

    if (ngx_strcmp(vendor, "GenuineIntel") == 0) {

        switch ((cpu[0] & 0xf00) >> 8) {

        /* Pentium */
        case 5:
            ngx_cacheline_size = 32;
            break;

        /* Pentium Pro, II, III */
        case 6:
            ngx_cacheline_size = 32;

            model = ((cpu[0] & 0xf0000) >> 8) | (cpu[0] & 0xf0);

            if (model >= 0xd0) {
                /* Intel Core, Core 2, Atom */
                ngx_cacheline_size = 64;
            }

            break;

        /*
         * Pentium 4, although its cache line size is 64 bytes,
         * it prefetches up to two cache lines during memory read
         */
        case 15:
            ngx_cacheline_size = 128;
            break;
        }

    } else if (ngx_strcmp(vendor, "AuthenticAMD") == 0) {
        ngx_cacheline_size = 64;
    }
}

#else


void
ngx_cpuinfo(void)
{
}


#endif