view src/core/ngx_md5.c @ 7623:72b792bb3885

HTTP/2: fixed socket leak with an incomplete HEADERS frame. A connection could get stuck without timers if a client has partially sent the HEADERS frame such that it was split on the individual header boundary. In this case, it cannot be processed without the rest of the HEADERS frame. The fix is to call ngx_http_v2_state_headers_save() in this case. Normally, it would be called from the ngx_http_v2_state_header_block() handler on the next iteration, when there is not enough data to continue processing. This isn't the case if recv_buffer became empty and there's no more data to read.
author Sergey Kandaurov <pluknet@nginx.com>
date Wed, 05 Feb 2020 16:29:23 +0300
parents 9eefb38f0005
children
line wrap: on
line source


/*
 * An internal implementation, based on Alexander Peslyak's
 * public domain implementation:
 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
 */


#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_md5.h>


static const u_char *ngx_md5_body(ngx_md5_t *ctx, const u_char *data,
    size_t size);


void
ngx_md5_init(ngx_md5_t *ctx)
{
    ctx->a = 0x67452301;
    ctx->b = 0xefcdab89;
    ctx->c = 0x98badcfe;
    ctx->d = 0x10325476;

    ctx->bytes = 0;
}


void
ngx_md5_update(ngx_md5_t *ctx, const void *data, size_t size)
{
    size_t  used, free;

    used = (size_t) (ctx->bytes & 0x3f);
    ctx->bytes += size;

    if (used) {
        free = 64 - used;

        if (size < free) {
            ngx_memcpy(&ctx->buffer[used], data, size);
            return;
        }

        ngx_memcpy(&ctx->buffer[used], data, free);
        data = (u_char *) data + free;
        size -= free;
        (void) ngx_md5_body(ctx, ctx->buffer, 64);
    }

    if (size >= 64) {
        data = ngx_md5_body(ctx, data, size & ~(size_t) 0x3f);
        size &= 0x3f;
    }

    ngx_memcpy(ctx->buffer, data, size);
}


void
ngx_md5_final(u_char result[16], ngx_md5_t *ctx)
{
    size_t  used, free;

    used = (size_t) (ctx->bytes & 0x3f);

    ctx->buffer[used++] = 0x80;

    free = 64 - used;

    if (free < 8) {
        ngx_memzero(&ctx->buffer[used], free);
        (void) ngx_md5_body(ctx, ctx->buffer, 64);
        used = 0;
        free = 64;
    }

    ngx_memzero(&ctx->buffer[used], free - 8);

    ctx->bytes <<= 3;
    ctx->buffer[56] = (u_char) ctx->bytes;
    ctx->buffer[57] = (u_char) (ctx->bytes >> 8);
    ctx->buffer[58] = (u_char) (ctx->bytes >> 16);
    ctx->buffer[59] = (u_char) (ctx->bytes >> 24);
    ctx->buffer[60] = (u_char) (ctx->bytes >> 32);
    ctx->buffer[61] = (u_char) (ctx->bytes >> 40);
    ctx->buffer[62] = (u_char) (ctx->bytes >> 48);
    ctx->buffer[63] = (u_char) (ctx->bytes >> 56);

    (void) ngx_md5_body(ctx, ctx->buffer, 64);

    result[0] = (u_char) ctx->a;
    result[1] = (u_char) (ctx->a >> 8);
    result[2] = (u_char) (ctx->a >> 16);
    result[3] = (u_char) (ctx->a >> 24);
    result[4] = (u_char) ctx->b;
    result[5] = (u_char) (ctx->b >> 8);
    result[6] = (u_char) (ctx->b >> 16);
    result[7] = (u_char) (ctx->b >> 24);
    result[8] = (u_char) ctx->c;
    result[9] = (u_char) (ctx->c >> 8);
    result[10] = (u_char) (ctx->c >> 16);
    result[11] = (u_char) (ctx->c >> 24);
    result[12] = (u_char) ctx->d;
    result[13] = (u_char) (ctx->d >> 8);
    result[14] = (u_char) (ctx->d >> 16);
    result[15] = (u_char) (ctx->d >> 24);

    ngx_memzero(ctx, sizeof(*ctx));
}


/*
 * The basic MD5 functions.
 *
 * F and G are optimized compared to their RFC 1321 definitions for
 * architectures that lack an AND-NOT instruction, just like in
 * Colin Plumb's implementation.
 */

#define F(x, y, z)  ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z)  ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z)  ((x) ^ (y) ^ (z))
#define I(x, y, z)  ((y) ^ ((x) | ~(z)))

/*
 * The MD5 transformation for all four rounds.
 */

#define STEP(f, a, b, c, d, x, t, s)                                          \
    (a) += f((b), (c), (d)) + (x) + (t);                                      \
    (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s))));                \
    (a) += (b)

/*
 * SET() reads 4 input bytes in little-endian byte order and stores them
 * in a properly aligned word in host byte order.
 *
 * The check for little-endian architectures that tolerate unaligned
 * memory accesses is just an optimization.  Nothing will break if it
 * does not work.
 */

#if (NGX_HAVE_LITTLE_ENDIAN && NGX_HAVE_NONALIGNED)

#define SET(n)      (*(uint32_t *) &p[n * 4])
#define GET(n)      (*(uint32_t *) &p[n * 4])

#else

#define SET(n)                                                                \
    (block[n] =                                                               \
    (uint32_t) p[n * 4] |                                                     \
    ((uint32_t) p[n * 4 + 1] << 8) |                                          \
    ((uint32_t) p[n * 4 + 2] << 16) |                                         \
    ((uint32_t) p[n * 4 + 3] << 24))

#define GET(n)      block[n]

#endif


/*
 * This processes one or more 64-byte data blocks, but does not update
 * the bit counters.  There are no alignment requirements.
 */

static const u_char *
ngx_md5_body(ngx_md5_t *ctx, const u_char *data, size_t size)
{
    uint32_t       a, b, c, d;
    uint32_t       saved_a, saved_b, saved_c, saved_d;
    const u_char  *p;
#if !(NGX_HAVE_LITTLE_ENDIAN && NGX_HAVE_NONALIGNED)
    uint32_t       block[16];
#endif

    p = data;

    a = ctx->a;
    b = ctx->b;
    c = ctx->c;
    d = ctx->d;

    do {
        saved_a = a;
        saved_b = b;
        saved_c = c;
        saved_d = d;

        /* Round 1 */

        STEP(F, a, b, c, d, SET(0),  0xd76aa478, 7);
        STEP(F, d, a, b, c, SET(1),  0xe8c7b756, 12);
        STEP(F, c, d, a, b, SET(2),  0x242070db, 17);
        STEP(F, b, c, d, a, SET(3),  0xc1bdceee, 22);
        STEP(F, a, b, c, d, SET(4),  0xf57c0faf, 7);
        STEP(F, d, a, b, c, SET(5),  0x4787c62a, 12);
        STEP(F, c, d, a, b, SET(6),  0xa8304613, 17);
        STEP(F, b, c, d, a, SET(7),  0xfd469501, 22);
        STEP(F, a, b, c, d, SET(8),  0x698098d8, 7);
        STEP(F, d, a, b, c, SET(9),  0x8b44f7af, 12);
        STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17);
        STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22);
        STEP(F, a, b, c, d, SET(12), 0x6b901122, 7);
        STEP(F, d, a, b, c, SET(13), 0xfd987193, 12);
        STEP(F, c, d, a, b, SET(14), 0xa679438e, 17);
        STEP(F, b, c, d, a, SET(15), 0x49b40821, 22);

        /* Round 2 */

        STEP(G, a, b, c, d, GET(1),  0xf61e2562, 5);
        STEP(G, d, a, b, c, GET(6),  0xc040b340, 9);
        STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14);
        STEP(G, b, c, d, a, GET(0),  0xe9b6c7aa, 20);
        STEP(G, a, b, c, d, GET(5),  0xd62f105d, 5);
        STEP(G, d, a, b, c, GET(10), 0x02441453, 9);
        STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14);
        STEP(G, b, c, d, a, GET(4),  0xe7d3fbc8, 20);
        STEP(G, a, b, c, d, GET(9),  0x21e1cde6, 5);
        STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9);
        STEP(G, c, d, a, b, GET(3),  0xf4d50d87, 14);
        STEP(G, b, c, d, a, GET(8),  0x455a14ed, 20);
        STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5);
        STEP(G, d, a, b, c, GET(2),  0xfcefa3f8, 9);
        STEP(G, c, d, a, b, GET(7),  0x676f02d9, 14);
        STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20);

        /* Round 3 */

        STEP(H, a, b, c, d, GET(5),  0xfffa3942, 4);
        STEP(H, d, a, b, c, GET(8),  0x8771f681, 11);
        STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16);
        STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23);
        STEP(H, a, b, c, d, GET(1),  0xa4beea44, 4);
        STEP(H, d, a, b, c, GET(4),  0x4bdecfa9, 11);
        STEP(H, c, d, a, b, GET(7),  0xf6bb4b60, 16);
        STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23);
        STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4);
        STEP(H, d, a, b, c, GET(0),  0xeaa127fa, 11);
        STEP(H, c, d, a, b, GET(3),  0xd4ef3085, 16);
        STEP(H, b, c, d, a, GET(6),  0x04881d05, 23);
        STEP(H, a, b, c, d, GET(9),  0xd9d4d039, 4);
        STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11);
        STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16);
        STEP(H, b, c, d, a, GET(2),  0xc4ac5665, 23);

        /* Round 4 */

        STEP(I, a, b, c, d, GET(0),  0xf4292244, 6);
        STEP(I, d, a, b, c, GET(7),  0x432aff97, 10);
        STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15);
        STEP(I, b, c, d, a, GET(5),  0xfc93a039, 21);
        STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6);
        STEP(I, d, a, b, c, GET(3),  0x8f0ccc92, 10);
        STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15);
        STEP(I, b, c, d, a, GET(1),  0x85845dd1, 21);
        STEP(I, a, b, c, d, GET(8),  0x6fa87e4f, 6);
        STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10);
        STEP(I, c, d, a, b, GET(6),  0xa3014314, 15);
        STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21);
        STEP(I, a, b, c, d, GET(4),  0xf7537e82, 6);
        STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10);
        STEP(I, c, d, a, b, GET(2),  0x2ad7d2bb, 15);
        STEP(I, b, c, d, a, GET(9),  0xeb86d391, 21);

        a += saved_a;
        b += saved_b;
        c += saved_c;
        d += saved_d;

        p += 64;

    } while (size -= 64);

    ctx->a = a;
    ctx->b = b;
    ctx->c = c;
    ctx->d = d;

    return p;
}