view src/core/ngx_palloc.h @ 6876:a5d1b1383dea

Upstream: fixed cache corruption and socket leaks with aio_write. The ngx_event_pipe() function wasn't called on write events with wev->delayed set. As a result, threaded writing results weren't properly collected in ngx_event_pipe_write_to_downstream() when a write event was triggered for a completed write. Further, this wasn't detected, as p->aio was reset by a thread completion handler, and results were later collected in ngx_event_pipe_read_upstream() instead of scheduling a new write of additional data. If this happened on the last reading from an upstream, last part of the response was never written to the cache file. Similar problems might also happen in case of timeouts when writing to client, as this also results in ngx_event_pipe() not being called on write events. In this scenario socket leaks were observed. Fix is to check if p->writing is set in ngx_event_pipe_read_upstream(), and therefore collect results of previous write operations in case of read events as well, similar to how we do so in ngx_event_pipe_write_downstream(). This is enough to fix the wev->delayed case. Additionally, we now call ngx_event_pipe() from ngx_http_upstream_process_request() if there are uncollected write operations (p->writing and !p->aio). This also fixes the wev->timedout case.
author Maxim Dounin <mdounin@mdounin.ru>
date Fri, 20 Jan 2017 21:14:19 +0300
parents d620f497c50f
children ef935cd7ed8d
line wrap: on
line source


/*
 * Copyright (C) Igor Sysoev
 * Copyright (C) Nginx, Inc.
 */


#ifndef _NGX_PALLOC_H_INCLUDED_
#define _NGX_PALLOC_H_INCLUDED_


#include <ngx_config.h>
#include <ngx_core.h>


/*
 * NGX_MAX_ALLOC_FROM_POOL should be (ngx_pagesize - 1), i.e. 4095 on x86.
 * On Windows NT it decreases a number of locked pages in a kernel.
 */
#define NGX_MAX_ALLOC_FROM_POOL  (ngx_pagesize - 1)

#define NGX_DEFAULT_POOL_SIZE    (16 * 1024)

#define NGX_POOL_ALIGNMENT       16
#define NGX_MIN_POOL_SIZE                                                     \
    ngx_align((sizeof(ngx_pool_t) + 2 * sizeof(ngx_pool_large_t)),            \
              NGX_POOL_ALIGNMENT)


typedef void (*ngx_pool_cleanup_pt)(void *data);

typedef struct ngx_pool_cleanup_s  ngx_pool_cleanup_t;

struct ngx_pool_cleanup_s {
    ngx_pool_cleanup_pt   handler;
    void                 *data;
    ngx_pool_cleanup_t   *next;
};


typedef struct ngx_pool_large_s  ngx_pool_large_t;

struct ngx_pool_large_s {
    ngx_pool_large_t     *next;
    void                 *alloc;
};


typedef struct {
    u_char               *last;
    u_char               *end;
    ngx_pool_t           *next;
    ngx_uint_t            failed;
} ngx_pool_data_t;


struct ngx_pool_s {
    ngx_pool_data_t       d;
    size_t                max;
    ngx_pool_t           *current;
    ngx_chain_t          *chain;
    ngx_pool_large_t     *large;
    ngx_pool_cleanup_t   *cleanup;
    ngx_log_t            *log;
};


typedef struct {
    ngx_fd_t              fd;
    u_char               *name;
    ngx_log_t            *log;
} ngx_pool_cleanup_file_t;


void *ngx_alloc(size_t size, ngx_log_t *log);
void *ngx_calloc(size_t size, ngx_log_t *log);

ngx_pool_t *ngx_create_pool(size_t size, ngx_log_t *log);
void ngx_destroy_pool(ngx_pool_t *pool);
void ngx_reset_pool(ngx_pool_t *pool);

void *ngx_palloc(ngx_pool_t *pool, size_t size);
void *ngx_pnalloc(ngx_pool_t *pool, size_t size);
void *ngx_pcalloc(ngx_pool_t *pool, size_t size);
void *ngx_pmemalign(ngx_pool_t *pool, size_t size, size_t alignment);
ngx_int_t ngx_pfree(ngx_pool_t *pool, void *p);


ngx_pool_cleanup_t *ngx_pool_cleanup_add(ngx_pool_t *p, size_t size);
void ngx_pool_run_cleanup_file(ngx_pool_t *p, ngx_fd_t fd);
void ngx_pool_cleanup_file(void *data);
void ngx_pool_delete_file(void *data);


#endif /* _NGX_PALLOC_H_INCLUDED_ */