view src/core/ngx_murmurhash.c @ 4621:c90801720a0c

Upstream: smooth weighted round-robin balancing. For edge case weights like { 5, 1, 1 } we now produce { a, a, b, a, c, a, a } sequence instead of { c, b, a, a, a, a, a } produced previously. Algorithm is as follows: on each peer selection we increase current_weight of each eligible peer by its weight, select peer with greatest current_weight and reduce its current_weight by total number of weight points distributed among peers. In case of { 5, 1, 1 } weights this gives the following sequence of current_weight's: a b c 0 0 0 (initial state) 5 1 1 (a selected) -2 1 1 3 2 2 (a selected) -4 2 2 1 3 3 (b selected) 1 -4 3 6 -3 4 (a selected) -1 -3 4 4 -2 5 (c selected) 4 -2 -2 9 -1 -1 (a selected) 2 -1 -1 7 0 0 (a selected) 0 0 0 To preserve weight reduction in case of failures the effective_weight variable was introduced, which usually matches peer's weight, but is reduced temporarily on peer failures. This change also fixes loop with backup servers and proxy_next_upstream http_404 (ticket #47), and skipping alive upstreams in some cases if there are multiple dead ones (ticket #64).
author Maxim Dounin <mdounin@mdounin.ru>
date Mon, 14 May 2012 09:57:20 +0000
parents 203eb026ec07
children f38647c651a8
line wrap: on
line source


/*
 * Copyright (C) Austin Appleby
 */


#include <ngx_config.h>
#include <ngx_core.h>


uint32_t
ngx_murmur_hash2(u_char *data, size_t len)
{
    uint32_t  h, k;

    h = 0 ^ len;

    while (len >= 4) {
        k  = data[0];
        k |= data[1] << 8;
        k |= data[2] << 16;
        k |= data[3] << 24;

        k *= 0x5bd1e995;
        k ^= k >> 24;
        k *= 0x5bd1e995;

        h *= 0x5bd1e995;
        h ^= k;

        data += 4;
        len -= 4;
    }

    switch (len) {
    case 3:
        h ^= data[2] << 16;
    case 2:
        h ^= data[1] << 8;
    case 1:
        h ^= data[0];
        h *= 0x5bd1e995;
    }

    h ^= h >> 13;
    h *= 0x5bd1e995;
    h ^= h >> 15;

    return h;
}