view src/core/ngx_radix_tree.h @ 9067:f68fdb017141 quic

QUIC: optimized sending stream response. When a stream is created by client, it's often the case that nginx will send immediate response on that stream. An example is HTTP/3 request stream, which in most cases quickly replies with at least HTTP headers. QUIC stream init handlers are called from a posted event. Output QUIC frames are also sent to client from a posted event, called the push event. If the push event is posted before the stream init event, then output produced by stream may trigger sending an extra UDP datagram. To address this, push event is now re-posted when a new stream init event is posted. An example is handling 0-RTT packets. Client typically sends an init packet coalesced with a 0-RTT packet. Previously, nginx replied with a padded CRYPTO datagram, followed by a 1-RTT stream reply datagram. Now CRYPTO and STREAM packets are coalesced in one reply datagram, which saves bandwidth. Other examples include coalescing 1-RTT first stream response, and MAX_STREAMS/STREAM sent in response to ACK/STREAM.
author Roman Arutyunyan <arut@nginx.com>
date Mon, 03 Apr 2023 16:17:12 +0400
parents 3be3de31d7dd
children
line wrap: on
line source


/*
 * Copyright (C) Igor Sysoev
 * Copyright (C) Nginx, Inc.
 */


#ifndef _NGX_RADIX_TREE_H_INCLUDED_
#define _NGX_RADIX_TREE_H_INCLUDED_


#include <ngx_config.h>
#include <ngx_core.h>


#define NGX_RADIX_NO_VALUE   (uintptr_t) -1

typedef struct ngx_radix_node_s  ngx_radix_node_t;

struct ngx_radix_node_s {
    ngx_radix_node_t  *right;
    ngx_radix_node_t  *left;
    ngx_radix_node_t  *parent;
    uintptr_t          value;
};


typedef struct {
    ngx_radix_node_t  *root;
    ngx_pool_t        *pool;
    ngx_radix_node_t  *free;
    char              *start;
    size_t             size;
} ngx_radix_tree_t;


ngx_radix_tree_t *ngx_radix_tree_create(ngx_pool_t *pool,
    ngx_int_t preallocate);

ngx_int_t ngx_radix32tree_insert(ngx_radix_tree_t *tree,
    uint32_t key, uint32_t mask, uintptr_t value);
ngx_int_t ngx_radix32tree_delete(ngx_radix_tree_t *tree,
    uint32_t key, uint32_t mask);
uintptr_t ngx_radix32tree_find(ngx_radix_tree_t *tree, uint32_t key);

#if (NGX_HAVE_INET6)
ngx_int_t ngx_radix128tree_insert(ngx_radix_tree_t *tree,
    u_char *key, u_char *mask, uintptr_t value);
ngx_int_t ngx_radix128tree_delete(ngx_radix_tree_t *tree,
    u_char *key, u_char *mask);
uintptr_t ngx_radix128tree_find(ngx_radix_tree_t *tree, u_char *key);
#endif


#endif /* _NGX_RADIX_TREE_H_INCLUDED_ */