view src/core/ngx_radix_tree.h @ 6536:f7849bfb6d21

Improved EPOLLRDHUP handling. When it's known that the kernel supports EPOLLRDHUP, there is no need in additional recv() call to get EOF or error when the flag is absent in the event generated by the kernel. A special runtime test is done at startup to detect if EPOLLRDHUP is actually supported by the kernel because epoll_ctl() silently ignores unknown flags. With this knowledge it's now possible to drop the "ready" flag for partial read. Previously, the "ready" flag was kept until the recv() returned EOF or error. In particular, this change allows the lingering close heuristics (which relies on the "ready" flag state) to actually work on Linux, and not wait for more data in most cases. The "available" flag is now used in the read event with the semantics similar to the corresponding counter in kqueue.
author Valentin Bartenev <vbart@nginx.com>
date Fri, 13 May 2016 17:19:23 +0300
parents 3be3de31d7dd
children
line wrap: on
line source


/*
 * Copyright (C) Igor Sysoev
 * Copyright (C) Nginx, Inc.
 */


#ifndef _NGX_RADIX_TREE_H_INCLUDED_
#define _NGX_RADIX_TREE_H_INCLUDED_


#include <ngx_config.h>
#include <ngx_core.h>


#define NGX_RADIX_NO_VALUE   (uintptr_t) -1

typedef struct ngx_radix_node_s  ngx_radix_node_t;

struct ngx_radix_node_s {
    ngx_radix_node_t  *right;
    ngx_radix_node_t  *left;
    ngx_radix_node_t  *parent;
    uintptr_t          value;
};


typedef struct {
    ngx_radix_node_t  *root;
    ngx_pool_t        *pool;
    ngx_radix_node_t  *free;
    char              *start;
    size_t             size;
} ngx_radix_tree_t;


ngx_radix_tree_t *ngx_radix_tree_create(ngx_pool_t *pool,
    ngx_int_t preallocate);

ngx_int_t ngx_radix32tree_insert(ngx_radix_tree_t *tree,
    uint32_t key, uint32_t mask, uintptr_t value);
ngx_int_t ngx_radix32tree_delete(ngx_radix_tree_t *tree,
    uint32_t key, uint32_t mask);
uintptr_t ngx_radix32tree_find(ngx_radix_tree_t *tree, uint32_t key);

#if (NGX_HAVE_INET6)
ngx_int_t ngx_radix128tree_insert(ngx_radix_tree_t *tree,
    u_char *key, u_char *mask, uintptr_t value);
ngx_int_t ngx_radix128tree_delete(ngx_radix_tree_t *tree,
    u_char *key, u_char *mask);
uintptr_t ngx_radix128tree_find(ngx_radix_tree_t *tree, u_char *key);
#endif


#endif /* _NGX_RADIX_TREE_H_INCLUDED_ */