view src/core/ngx_md5.c @ 8311:f790816a0e87

HTTP/2: removed http2_idle_timeout and http2_max_requests. Instead, keepalive_timeout and keepalive_requests are now used. This is expected to simplify HTTP/2 code and usage. This also matches directives used by upstream module for all protocols. In case of default settings, this effectively changes maximum number of requests per connection from 1000 to 100. This looks acceptable, especially given that HTTP/2 code now properly supports lingering close. Further, this changes default keepalive timeout in HTTP/2 from 300 seconds to 75 seconds. This also looks acceptable, and larger than PING interval used by Firefox (network.http.spdy.ping-threshold defaults to 58s), the only browser to use PINGs.
author Maxim Dounin <mdounin@mdounin.ru>
date Thu, 11 Feb 2021 21:52:23 +0300
parents 9eefb38f0005
children
line wrap: on
line source


/*
 * An internal implementation, based on Alexander Peslyak's
 * public domain implementation:
 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
 */


#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_md5.h>


static const u_char *ngx_md5_body(ngx_md5_t *ctx, const u_char *data,
    size_t size);


void
ngx_md5_init(ngx_md5_t *ctx)
{
    ctx->a = 0x67452301;
    ctx->b = 0xefcdab89;
    ctx->c = 0x98badcfe;
    ctx->d = 0x10325476;

    ctx->bytes = 0;
}


void
ngx_md5_update(ngx_md5_t *ctx, const void *data, size_t size)
{
    size_t  used, free;

    used = (size_t) (ctx->bytes & 0x3f);
    ctx->bytes += size;

    if (used) {
        free = 64 - used;

        if (size < free) {
            ngx_memcpy(&ctx->buffer[used], data, size);
            return;
        }

        ngx_memcpy(&ctx->buffer[used], data, free);
        data = (u_char *) data + free;
        size -= free;
        (void) ngx_md5_body(ctx, ctx->buffer, 64);
    }

    if (size >= 64) {
        data = ngx_md5_body(ctx, data, size & ~(size_t) 0x3f);
        size &= 0x3f;
    }

    ngx_memcpy(ctx->buffer, data, size);
}


void
ngx_md5_final(u_char result[16], ngx_md5_t *ctx)
{
    size_t  used, free;

    used = (size_t) (ctx->bytes & 0x3f);

    ctx->buffer[used++] = 0x80;

    free = 64 - used;

    if (free < 8) {
        ngx_memzero(&ctx->buffer[used], free);
        (void) ngx_md5_body(ctx, ctx->buffer, 64);
        used = 0;
        free = 64;
    }

    ngx_memzero(&ctx->buffer[used], free - 8);

    ctx->bytes <<= 3;
    ctx->buffer[56] = (u_char) ctx->bytes;
    ctx->buffer[57] = (u_char) (ctx->bytes >> 8);
    ctx->buffer[58] = (u_char) (ctx->bytes >> 16);
    ctx->buffer[59] = (u_char) (ctx->bytes >> 24);
    ctx->buffer[60] = (u_char) (ctx->bytes >> 32);
    ctx->buffer[61] = (u_char) (ctx->bytes >> 40);
    ctx->buffer[62] = (u_char) (ctx->bytes >> 48);
    ctx->buffer[63] = (u_char) (ctx->bytes >> 56);

    (void) ngx_md5_body(ctx, ctx->buffer, 64);

    result[0] = (u_char) ctx->a;
    result[1] = (u_char) (ctx->a >> 8);
    result[2] = (u_char) (ctx->a >> 16);
    result[3] = (u_char) (ctx->a >> 24);
    result[4] = (u_char) ctx->b;
    result[5] = (u_char) (ctx->b >> 8);
    result[6] = (u_char) (ctx->b >> 16);
    result[7] = (u_char) (ctx->b >> 24);
    result[8] = (u_char) ctx->c;
    result[9] = (u_char) (ctx->c >> 8);
    result[10] = (u_char) (ctx->c >> 16);
    result[11] = (u_char) (ctx->c >> 24);
    result[12] = (u_char) ctx->d;
    result[13] = (u_char) (ctx->d >> 8);
    result[14] = (u_char) (ctx->d >> 16);
    result[15] = (u_char) (ctx->d >> 24);

    ngx_memzero(ctx, sizeof(*ctx));
}


/*
 * The basic MD5 functions.
 *
 * F and G are optimized compared to their RFC 1321 definitions for
 * architectures that lack an AND-NOT instruction, just like in
 * Colin Plumb's implementation.
 */

#define F(x, y, z)  ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z)  ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z)  ((x) ^ (y) ^ (z))
#define I(x, y, z)  ((y) ^ ((x) | ~(z)))

/*
 * The MD5 transformation for all four rounds.
 */

#define STEP(f, a, b, c, d, x, t, s)                                          \
    (a) += f((b), (c), (d)) + (x) + (t);                                      \
    (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s))));                \
    (a) += (b)

/*
 * SET() reads 4 input bytes in little-endian byte order and stores them
 * in a properly aligned word in host byte order.
 *
 * The check for little-endian architectures that tolerate unaligned
 * memory accesses is just an optimization.  Nothing will break if it
 * does not work.
 */

#if (NGX_HAVE_LITTLE_ENDIAN && NGX_HAVE_NONALIGNED)

#define SET(n)      (*(uint32_t *) &p[n * 4])
#define GET(n)      (*(uint32_t *) &p[n * 4])

#else

#define SET(n)                                                                \
    (block[n] =                                                               \
    (uint32_t) p[n * 4] |                                                     \
    ((uint32_t) p[n * 4 + 1] << 8) |                                          \
    ((uint32_t) p[n * 4 + 2] << 16) |                                         \
    ((uint32_t) p[n * 4 + 3] << 24))

#define GET(n)      block[n]

#endif


/*
 * This processes one or more 64-byte data blocks, but does not update
 * the bit counters.  There are no alignment requirements.
 */

static const u_char *
ngx_md5_body(ngx_md5_t *ctx, const u_char *data, size_t size)
{
    uint32_t       a, b, c, d;
    uint32_t       saved_a, saved_b, saved_c, saved_d;
    const u_char  *p;
#if !(NGX_HAVE_LITTLE_ENDIAN && NGX_HAVE_NONALIGNED)
    uint32_t       block[16];
#endif

    p = data;

    a = ctx->a;
    b = ctx->b;
    c = ctx->c;
    d = ctx->d;

    do {
        saved_a = a;
        saved_b = b;
        saved_c = c;
        saved_d = d;

        /* Round 1 */

        STEP(F, a, b, c, d, SET(0),  0xd76aa478, 7);
        STEP(F, d, a, b, c, SET(1),  0xe8c7b756, 12);
        STEP(F, c, d, a, b, SET(2),  0x242070db, 17);
        STEP(F, b, c, d, a, SET(3),  0xc1bdceee, 22);
        STEP(F, a, b, c, d, SET(4),  0xf57c0faf, 7);
        STEP(F, d, a, b, c, SET(5),  0x4787c62a, 12);
        STEP(F, c, d, a, b, SET(6),  0xa8304613, 17);
        STEP(F, b, c, d, a, SET(7),  0xfd469501, 22);
        STEP(F, a, b, c, d, SET(8),  0x698098d8, 7);
        STEP(F, d, a, b, c, SET(9),  0x8b44f7af, 12);
        STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17);
        STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22);
        STEP(F, a, b, c, d, SET(12), 0x6b901122, 7);
        STEP(F, d, a, b, c, SET(13), 0xfd987193, 12);
        STEP(F, c, d, a, b, SET(14), 0xa679438e, 17);
        STEP(F, b, c, d, a, SET(15), 0x49b40821, 22);

        /* Round 2 */

        STEP(G, a, b, c, d, GET(1),  0xf61e2562, 5);
        STEP(G, d, a, b, c, GET(6),  0xc040b340, 9);
        STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14);
        STEP(G, b, c, d, a, GET(0),  0xe9b6c7aa, 20);
        STEP(G, a, b, c, d, GET(5),  0xd62f105d, 5);
        STEP(G, d, a, b, c, GET(10), 0x02441453, 9);
        STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14);
        STEP(G, b, c, d, a, GET(4),  0xe7d3fbc8, 20);
        STEP(G, a, b, c, d, GET(9),  0x21e1cde6, 5);
        STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9);
        STEP(G, c, d, a, b, GET(3),  0xf4d50d87, 14);
        STEP(G, b, c, d, a, GET(8),  0x455a14ed, 20);
        STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5);
        STEP(G, d, a, b, c, GET(2),  0xfcefa3f8, 9);
        STEP(G, c, d, a, b, GET(7),  0x676f02d9, 14);
        STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20);

        /* Round 3 */

        STEP(H, a, b, c, d, GET(5),  0xfffa3942, 4);
        STEP(H, d, a, b, c, GET(8),  0x8771f681, 11);
        STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16);
        STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23);
        STEP(H, a, b, c, d, GET(1),  0xa4beea44, 4);
        STEP(H, d, a, b, c, GET(4),  0x4bdecfa9, 11);
        STEP(H, c, d, a, b, GET(7),  0xf6bb4b60, 16);
        STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23);
        STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4);
        STEP(H, d, a, b, c, GET(0),  0xeaa127fa, 11);
        STEP(H, c, d, a, b, GET(3),  0xd4ef3085, 16);
        STEP(H, b, c, d, a, GET(6),  0x04881d05, 23);
        STEP(H, a, b, c, d, GET(9),  0xd9d4d039, 4);
        STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11);
        STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16);
        STEP(H, b, c, d, a, GET(2),  0xc4ac5665, 23);

        /* Round 4 */

        STEP(I, a, b, c, d, GET(0),  0xf4292244, 6);
        STEP(I, d, a, b, c, GET(7),  0x432aff97, 10);
        STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15);
        STEP(I, b, c, d, a, GET(5),  0xfc93a039, 21);
        STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6);
        STEP(I, d, a, b, c, GET(3),  0x8f0ccc92, 10);
        STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15);
        STEP(I, b, c, d, a, GET(1),  0x85845dd1, 21);
        STEP(I, a, b, c, d, GET(8),  0x6fa87e4f, 6);
        STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10);
        STEP(I, c, d, a, b, GET(6),  0xa3014314, 15);
        STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21);
        STEP(I, a, b, c, d, GET(4),  0xf7537e82, 6);
        STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10);
        STEP(I, c, d, a, b, GET(2),  0x2ad7d2bb, 15);
        STEP(I, b, c, d, a, GET(9),  0xeb86d391, 21);

        a += saved_a;
        b += saved_b;
        c += saved_c;
        d += saved_d;

        p += 64;

    } while (size -= 64);

    ctx->a = a;
    ctx->b = b;
    ctx->c = c;
    ctx->d = d;

    return p;
}