view http_header_buffers.t @ 1571:1b4ceab9cb1c

Tests: fixed ssl_certificate.t with LibreSSL client. Net::SSLeay::connect() that manages TLS handshake could return unexpected error when receiving server alert, as seen in server certificate tests if it could not been selected. Typically, it returns the expected error -1, but with certain libssl implementations it can be 0, as explained below. The error is propagated from libssl's SSL_connect(), which is usually -1. In modern OpenSSL versions, it is the default error code used in the state machine returned when something went wrong with parsing TLS message header. In versions up to OpenSSL 1.0.2, with SSLv23_method() used by default, -1 is the only error code in the ssl_connect() method implementation which is used as well if receiving alert while parsing ServerHello. BoringSSL also seems to return -1. But it is not so with LibreSSL that returns zero. Previously, tests failed with client built with LibreSSL with SSLv3 removed. Here, the error is propagated directly from ssl_read_bytes() method, which is always implemented as ssl3_read_bytes() in all TLS methods. It could be also seen with OpenSSL up to 1.0.2 with non-default methods explicitly set.
author Sergey Kandaurov <pluknet@nginx.com>
date Fri, 29 May 2020 23:10:20 +0300
parents 66c7dee0431c
children
line wrap: on
line source

#!/usr/bin/perl

# (C) Maxim Dounin
# (C) Nginx, Inc.

# Tests for large_client_header_buffers directive.

###############################################################################

use warnings;
use strict;

use Test::More;

use Socket qw/ CRLF /;

BEGIN { use FindBin; chdir($FindBin::Bin); }

use lib 'lib';
use Test::Nginx;

###############################################################################

select STDERR; $| = 1;
select STDOUT; $| = 1;

my $t = Test::Nginx->new()->has(qw/http rewrite/)->plan(10)
	->write_file_expand('nginx.conf', <<'EOF');

%%TEST_GLOBALS%%

daemon off;

events {
}

http {
    %%TEST_GLOBALS_HTTP%%

    connection_pool_size 128;
    client_header_buffer_size 128;

    server {
        listen       127.0.0.1:8080;
        server_name  five;

        large_client_header_buffers 5 256;

        return 204;
    }

    server {
        listen       127.0.0.1:8080;
        server_name  ten;

        large_client_header_buffers 10 256;

        return 204;
    }

    server {
        listen       127.0.0.1:8080;
        server_name  one;

        large_client_header_buffers 1 256;

        return 204;
    }

    server {
        listen       127.0.0.1:8080;
        server_name  foo;

        large_client_header_buffers 5 256;

        add_header X-URI $uri;
        add_header X-Foo $http_x_foo;
        return 204;
    }
}

EOF

$t->run();

###############################################################################

TODO: {
todo_skip 'overflow', 2 unless $ENV{TEST_NGINX_UNSAFE};

# if hc->busy is allocated before the virtual server is selected,
# and then additional buffers are allocated in a virtual server with larger
# number of buffers configured, hc->busy will be overflowed

like(http(
	"GET / HTTP/1.0" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"Host: ten" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF
), qr/204|400/, 'additional buffers in virtual server');

# for pipelined requests large header buffers are saved to hc->free;
# it sized for number of buffers in the current virtual server, but
# saves previously allocated buffers, and there may be more buffers if
# allocatad before the virtual server was selected

like(http(
	"GET / HTTP/1.1" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"Host: one" . CRLF .
	CRLF .
	"GET / HTTP/1.1" . CRLF .
	"Host: one" . CRLF .
	"Connection: close" . CRLF .
	CRLF
), qr/204/, 'pipelined with too many buffers');

}

# check if long header and long request lines are correctly returned
# when nginx allocates a long header buffer

like(http(
	"GET / HTTP/1.0" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: foo" . ("1234567890" x 20) . "bar" . CRLF .
	CRLF
), qr/X-Foo: foo(1234567890){20}bar/, 'long header');

like(http(
	"GET /foo" . ("1234567890" x 20) . "bar HTTP/1.0" . CRLF .
	"Host: foo" . CRLF .
	CRLF
), qr!X-URI: /foo(1234567890){20}bar!, 'long request line');

# the same as the above, but with pipelining, so there is a buffer
# allocated in the previous request

like(http(
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF .
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"Connection: close" . CRLF .
	"X-Foo: foo" . ("1234567890" x 20) . "bar" . CRLF .
	CRLF
), qr/X-Foo: foo(1234567890){20}bar/, 'long header after pipelining');

like(http(
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF .
	"GET /foo" . ("1234567890" x 20) . "bar HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"Connection: close" . CRLF .
	CRLF
), qr!X-URI: /foo(1234567890){20}bar!, 'long request line after pipelining');

# the same as the above, but with keepalive; this ensures that previously
# allocated buffers are properly cleaned up when we set keepalive handler

like(http(
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF,
sleep => 0.1, body =>
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"Connection: close" . CRLF .
	"X-Foo: foo" . ("1234567890" x 20) . "bar" . CRLF .
	CRLF
), qr/X-Foo: foo(1234567890){20}bar/, 'long header after keepalive');

like(http(
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF,
sleep => 0.1, body =>
	"GET /foo" . ("1234567890" x 20) . "bar HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"Connection: close" . CRLF .
	CRLF
), qr!X-URI: /foo(1234567890){20}bar!, 'long request line after keepalive');

# the same as the above, but with pipelining and then keepalive;
# this ensures that previously allocated buffers are properly cleaned
# up when we set keepalive handler, including hc->free

like(http(
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF .
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF,
sleep => 0.1, body =>
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"Connection: close" . CRLF .
	"X-Foo: foo" . ("1234567890" x 20) . "bar" . CRLF .
	CRLF
), qr/X-Foo: foo(1234567890){20}bar/, 'long header after both');

like(http(
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF .
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF,
sleep => 0.1, body =>
	"GET /foo" . ("1234567890" x 20) . "bar HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"Connection: close" . CRLF .
	CRLF
), qr!X-URI: /foo(1234567890){20}bar!, 'long request line after both');

###############################################################################