view src/core/ngx_md5.c @ 7686:1f3bf1734a77

Xslt: disabled ranges. Previously, the document generated by the xslt filter was always fully sent to client even if a range was requested and response status was 206 with appropriate Content-Range. The xslt module is unable to serve a range because of suspending the header filter chain. By the moment full response xml is buffered by the xslt filter, range header filter is not called yet, but the range body filter has already been called and did nothing. The fix is to disable ranges by resetting the r->allow_ranges flag much like the image filter that employs a similar technique.
author Roman Arutyunyan <arut@nginx.com>
date Wed, 22 Jul 2020 22:16:19 +0300
parents 9eefb38f0005
children
line wrap: on
line source


/*
 * An internal implementation, based on Alexander Peslyak's
 * public domain implementation:
 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
 */


#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_md5.h>


static const u_char *ngx_md5_body(ngx_md5_t *ctx, const u_char *data,
    size_t size);


void
ngx_md5_init(ngx_md5_t *ctx)
{
    ctx->a = 0x67452301;
    ctx->b = 0xefcdab89;
    ctx->c = 0x98badcfe;
    ctx->d = 0x10325476;

    ctx->bytes = 0;
}


void
ngx_md5_update(ngx_md5_t *ctx, const void *data, size_t size)
{
    size_t  used, free;

    used = (size_t) (ctx->bytes & 0x3f);
    ctx->bytes += size;

    if (used) {
        free = 64 - used;

        if (size < free) {
            ngx_memcpy(&ctx->buffer[used], data, size);
            return;
        }

        ngx_memcpy(&ctx->buffer[used], data, free);
        data = (u_char *) data + free;
        size -= free;
        (void) ngx_md5_body(ctx, ctx->buffer, 64);
    }

    if (size >= 64) {
        data = ngx_md5_body(ctx, data, size & ~(size_t) 0x3f);
        size &= 0x3f;
    }

    ngx_memcpy(ctx->buffer, data, size);
}


void
ngx_md5_final(u_char result[16], ngx_md5_t *ctx)
{
    size_t  used, free;

    used = (size_t) (ctx->bytes & 0x3f);

    ctx->buffer[used++] = 0x80;

    free = 64 - used;

    if (free < 8) {
        ngx_memzero(&ctx->buffer[used], free);
        (void) ngx_md5_body(ctx, ctx->buffer, 64);
        used = 0;
        free = 64;
    }

    ngx_memzero(&ctx->buffer[used], free - 8);

    ctx->bytes <<= 3;
    ctx->buffer[56] = (u_char) ctx->bytes;
    ctx->buffer[57] = (u_char) (ctx->bytes >> 8);
    ctx->buffer[58] = (u_char) (ctx->bytes >> 16);
    ctx->buffer[59] = (u_char) (ctx->bytes >> 24);
    ctx->buffer[60] = (u_char) (ctx->bytes >> 32);
    ctx->buffer[61] = (u_char) (ctx->bytes >> 40);
    ctx->buffer[62] = (u_char) (ctx->bytes >> 48);
    ctx->buffer[63] = (u_char) (ctx->bytes >> 56);

    (void) ngx_md5_body(ctx, ctx->buffer, 64);

    result[0] = (u_char) ctx->a;
    result[1] = (u_char) (ctx->a >> 8);
    result[2] = (u_char) (ctx->a >> 16);
    result[3] = (u_char) (ctx->a >> 24);
    result[4] = (u_char) ctx->b;
    result[5] = (u_char) (ctx->b >> 8);
    result[6] = (u_char) (ctx->b >> 16);
    result[7] = (u_char) (ctx->b >> 24);
    result[8] = (u_char) ctx->c;
    result[9] = (u_char) (ctx->c >> 8);
    result[10] = (u_char) (ctx->c >> 16);
    result[11] = (u_char) (ctx->c >> 24);
    result[12] = (u_char) ctx->d;
    result[13] = (u_char) (ctx->d >> 8);
    result[14] = (u_char) (ctx->d >> 16);
    result[15] = (u_char) (ctx->d >> 24);

    ngx_memzero(ctx, sizeof(*ctx));
}


/*
 * The basic MD5 functions.
 *
 * F and G are optimized compared to their RFC 1321 definitions for
 * architectures that lack an AND-NOT instruction, just like in
 * Colin Plumb's implementation.
 */

#define F(x, y, z)  ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z)  ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z)  ((x) ^ (y) ^ (z))
#define I(x, y, z)  ((y) ^ ((x) | ~(z)))

/*
 * The MD5 transformation for all four rounds.
 */

#define STEP(f, a, b, c, d, x, t, s)                                          \
    (a) += f((b), (c), (d)) + (x) + (t);                                      \
    (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s))));                \
    (a) += (b)

/*
 * SET() reads 4 input bytes in little-endian byte order and stores them
 * in a properly aligned word in host byte order.
 *
 * The check for little-endian architectures that tolerate unaligned
 * memory accesses is just an optimization.  Nothing will break if it
 * does not work.
 */

#if (NGX_HAVE_LITTLE_ENDIAN && NGX_HAVE_NONALIGNED)

#define SET(n)      (*(uint32_t *) &p[n * 4])
#define GET(n)      (*(uint32_t *) &p[n * 4])

#else

#define SET(n)                                                                \
    (block[n] =                                                               \
    (uint32_t) p[n * 4] |                                                     \
    ((uint32_t) p[n * 4 + 1] << 8) |                                          \
    ((uint32_t) p[n * 4 + 2] << 16) |                                         \
    ((uint32_t) p[n * 4 + 3] << 24))

#define GET(n)      block[n]

#endif


/*
 * This processes one or more 64-byte data blocks, but does not update
 * the bit counters.  There are no alignment requirements.
 */

static const u_char *
ngx_md5_body(ngx_md5_t *ctx, const u_char *data, size_t size)
{
    uint32_t       a, b, c, d;
    uint32_t       saved_a, saved_b, saved_c, saved_d;
    const u_char  *p;
#if !(NGX_HAVE_LITTLE_ENDIAN && NGX_HAVE_NONALIGNED)
    uint32_t       block[16];
#endif

    p = data;

    a = ctx->a;
    b = ctx->b;
    c = ctx->c;
    d = ctx->d;

    do {
        saved_a = a;
        saved_b = b;
        saved_c = c;
        saved_d = d;

        /* Round 1 */

        STEP(F, a, b, c, d, SET(0),  0xd76aa478, 7);
        STEP(F, d, a, b, c, SET(1),  0xe8c7b756, 12);
        STEP(F, c, d, a, b, SET(2),  0x242070db, 17);
        STEP(F, b, c, d, a, SET(3),  0xc1bdceee, 22);
        STEP(F, a, b, c, d, SET(4),  0xf57c0faf, 7);
        STEP(F, d, a, b, c, SET(5),  0x4787c62a, 12);
        STEP(F, c, d, a, b, SET(6),  0xa8304613, 17);
        STEP(F, b, c, d, a, SET(7),  0xfd469501, 22);
        STEP(F, a, b, c, d, SET(8),  0x698098d8, 7);
        STEP(F, d, a, b, c, SET(9),  0x8b44f7af, 12);
        STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17);
        STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22);
        STEP(F, a, b, c, d, SET(12), 0x6b901122, 7);
        STEP(F, d, a, b, c, SET(13), 0xfd987193, 12);
        STEP(F, c, d, a, b, SET(14), 0xa679438e, 17);
        STEP(F, b, c, d, a, SET(15), 0x49b40821, 22);

        /* Round 2 */

        STEP(G, a, b, c, d, GET(1),  0xf61e2562, 5);
        STEP(G, d, a, b, c, GET(6),  0xc040b340, 9);
        STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14);
        STEP(G, b, c, d, a, GET(0),  0xe9b6c7aa, 20);
        STEP(G, a, b, c, d, GET(5),  0xd62f105d, 5);
        STEP(G, d, a, b, c, GET(10), 0x02441453, 9);
        STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14);
        STEP(G, b, c, d, a, GET(4),  0xe7d3fbc8, 20);
        STEP(G, a, b, c, d, GET(9),  0x21e1cde6, 5);
        STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9);
        STEP(G, c, d, a, b, GET(3),  0xf4d50d87, 14);
        STEP(G, b, c, d, a, GET(8),  0x455a14ed, 20);
        STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5);
        STEP(G, d, a, b, c, GET(2),  0xfcefa3f8, 9);
        STEP(G, c, d, a, b, GET(7),  0x676f02d9, 14);
        STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20);

        /* Round 3 */

        STEP(H, a, b, c, d, GET(5),  0xfffa3942, 4);
        STEP(H, d, a, b, c, GET(8),  0x8771f681, 11);
        STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16);
        STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23);
        STEP(H, a, b, c, d, GET(1),  0xa4beea44, 4);
        STEP(H, d, a, b, c, GET(4),  0x4bdecfa9, 11);
        STEP(H, c, d, a, b, GET(7),  0xf6bb4b60, 16);
        STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23);
        STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4);
        STEP(H, d, a, b, c, GET(0),  0xeaa127fa, 11);
        STEP(H, c, d, a, b, GET(3),  0xd4ef3085, 16);
        STEP(H, b, c, d, a, GET(6),  0x04881d05, 23);
        STEP(H, a, b, c, d, GET(9),  0xd9d4d039, 4);
        STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11);
        STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16);
        STEP(H, b, c, d, a, GET(2),  0xc4ac5665, 23);

        /* Round 4 */

        STEP(I, a, b, c, d, GET(0),  0xf4292244, 6);
        STEP(I, d, a, b, c, GET(7),  0x432aff97, 10);
        STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15);
        STEP(I, b, c, d, a, GET(5),  0xfc93a039, 21);
        STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6);
        STEP(I, d, a, b, c, GET(3),  0x8f0ccc92, 10);
        STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15);
        STEP(I, b, c, d, a, GET(1),  0x85845dd1, 21);
        STEP(I, a, b, c, d, GET(8),  0x6fa87e4f, 6);
        STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10);
        STEP(I, c, d, a, b, GET(6),  0xa3014314, 15);
        STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21);
        STEP(I, a, b, c, d, GET(4),  0xf7537e82, 6);
        STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10);
        STEP(I, c, d, a, b, GET(2),  0x2ad7d2bb, 15);
        STEP(I, b, c, d, a, GET(9),  0xeb86d391, 21);

        a += saved_a;
        b += saved_b;
        c += saved_c;
        d += saved_d;

        p += 64;

    } while (size -= 64);

    ctx->a = a;
    ctx->b = b;
    ctx->c = c;
    ctx->d = d;

    return p;
}