view src/event/quic/ngx_event_quic_migration.c @ 8946:56dec0d4e5b1 quic

QUIC: avoid excessive buffer allocations in stream output. Previously, when a few bytes were send to a QUIC stream by the application, a 4K buffer was allocated for these bytes. Then a STREAM frame was created and that entire buffer was used as data for that frame. The frame with the buffer were in use up until the frame was acked by client. Meanwhile, when more bytes were send to the stream, more buffers were allocated and assigned as data to newer STREAM frames. In this scenario most buffer memory is unused. Now the unused part of the stream output buffer is available for further stream output while earlier parts of the buffer are waiting to be acked. This is achieved by splitting the output buffer.
author Roman Arutyunyan <arut@nginx.com>
date Fri, 24 Dec 2021 18:13:51 +0300
parents b7284807b4fa
children 1e2f4e9c8195
line wrap: on
line source


/*
 * Copyright (C) Nginx, Inc.
 */


#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_event.h>
#include <ngx_event_quic_connection.h>


static void ngx_quic_set_connection_path(ngx_connection_t *c,
    ngx_quic_path_t *path);
static ngx_int_t ngx_quic_validate_path(ngx_connection_t *c,
    ngx_quic_path_t *path);
static ngx_int_t ngx_quic_send_path_challenge(ngx_connection_t *c,
    ngx_quic_path_t *path);
static ngx_int_t ngx_quic_path_restore(ngx_connection_t *c);
static ngx_quic_path_t *ngx_quic_alloc_path(ngx_connection_t *c);


ngx_int_t
ngx_quic_handle_path_challenge_frame(ngx_connection_t *c,
    ngx_quic_path_challenge_frame_t *f)
{
    ngx_quic_path_t        *path;
    ngx_quic_frame_t        frame, *fp;
    ngx_quic_socket_t      *qsock;
    ngx_quic_connection_t  *qc;

    qc = ngx_quic_get_connection(c);

    ngx_memzero(&frame, sizeof(ngx_quic_frame_t));

    frame.level = ssl_encryption_application;
    frame.type = NGX_QUIC_FT_PATH_RESPONSE;
    frame.u.path_response = *f;

    /*
     * RFC 9000, 8.2.2.  Path Validation Responses
     *
     * A PATH_RESPONSE frame MUST be sent on the network path where the
     * PATH_CHALLENGE frame was received.
     */
    qsock = ngx_quic_get_socket(c);
    path = qsock->path;

    /*
     * An endpoint MUST expand datagrams that contain a PATH_RESPONSE frame
     * to at least the smallest allowed maximum datagram size of 1200 bytes.
     */
    if (ngx_quic_frame_sendto(c, &frame, 1200, path) != NGX_OK) {
        return NGX_ERROR;
    }

    if (qsock == qc->socket) {
        /*
         * RFC 9000, 9.3.3.  Off-Path Packet Forwarding
         *
         * An endpoint that receives a PATH_CHALLENGE on an active path SHOULD
         * send a non-probing packet in response.
         */

        fp = ngx_quic_alloc_frame(c);
        if (fp == NULL) {
            return NGX_ERROR;
        }

        fp->level = ssl_encryption_application;
        fp->type = NGX_QUIC_FT_PING;

        ngx_quic_queue_frame(qc, fp);
    }

    return NGX_OK;
}


ngx_int_t
ngx_quic_handle_path_response_frame(ngx_connection_t *c,
    ngx_quic_path_challenge_frame_t *f)
{
    ngx_uint_t              rst;
    ngx_queue_t            *q;
    ngx_quic_path_t        *path, *prev;
    ngx_quic_connection_t  *qc;

    qc = ngx_quic_get_connection(c);

    /*
     * RFC 9000, 8.2.3.  Successful Path Validation
     *
     * A PATH_RESPONSE frame received on any network path validates the path
     * on which the PATH_CHALLENGE was sent.
     */

    for (q = ngx_queue_head(&qc->paths);
         q != ngx_queue_sentinel(&qc->paths);
         q = ngx_queue_next(q))
    {
        path = ngx_queue_data(q, ngx_quic_path_t, queue);

        if (path->state != NGX_QUIC_PATH_VALIDATING) {
            continue;
        }

        if (ngx_memcmp(path->challenge1, f->data, sizeof(f->data)) == 0
            || ngx_memcmp(path->challenge2, f->data, sizeof(f->data)) == 0)
        {
            goto valid;
        }
    }

    ngx_log_error(NGX_LOG_INFO, c->log, 0,
                  "quic stale PATH_RESPONSE ignored");

    return NGX_OK;

valid:

    /*
     * RFC 9000, 9.4.  Loss Detection and Congestion Control
     *
     * On confirming a peer's ownership of its new address,
     * an endpoint MUST immediately reset the congestion controller
     * and round-trip time estimator for the new path to initial values
     * unless the only change in the peer's address is its port number.
     */

    rst = 1;

    if (qc->backup) {
        prev = qc->backup->path;

        if (ngx_cmp_sockaddr(prev->sockaddr, prev->socklen,
                             path->sockaddr, path->socklen, 0)
            == NGX_OK)
        {
            /* address did not change */
            rst = 0;
        }
    }

    if (rst) {
        ngx_memzero(&qc->congestion, sizeof(ngx_quic_congestion_t));

        qc->congestion.window = ngx_min(10 * qc->tp.max_udp_payload_size,
                                   ngx_max(2 * qc->tp.max_udp_payload_size,
                                           14720));
        qc->congestion.ssthresh = (size_t) -1;
        qc->congestion.recovery_start = ngx_current_msec;
    }

    /*
     * RFC 9000, 9.3.  Responding to Connection Migration
     *
     *  After verifying a new client address, the server SHOULD
     *  send new address validation tokens (Section 8) to the client.
     */

    if (ngx_quic_send_new_token(c, path) != NGX_OK) {
        return NGX_ERROR;
    }

    ngx_log_error(NGX_LOG_INFO, c->log, 0,
                   "quic path #%uL successfully validated", path->seqnum);

    path->state = NGX_QUIC_PATH_VALIDATED;
    path->limited = 0;

    return NGX_OK;
}


static ngx_quic_path_t *
ngx_quic_alloc_path(ngx_connection_t *c)
{
    ngx_queue_t            *q;
    struct sockaddr        *sa;
    ngx_quic_path_t        *path;
    ngx_quic_connection_t  *qc;

    qc = ngx_quic_get_connection(c);

    if (!ngx_queue_empty(&qc->free_paths)) {

        q = ngx_queue_head(&qc->free_paths);
        path = ngx_queue_data(q, ngx_quic_path_t, queue);

        ngx_queue_remove(&path->queue);

        sa = path->sockaddr;
        ngx_memzero(path, sizeof(ngx_quic_path_t));
        path->sockaddr = sa;

    } else {

        path = ngx_pcalloc(c->pool, sizeof(ngx_quic_path_t));
        if (path == NULL) {
            return NULL;
        }

        path->sockaddr = ngx_palloc(c->pool, NGX_SOCKADDRLEN);
        if (path->sockaddr == NULL) {
            return NULL;
        }
    }

    return path;
}


ngx_quic_path_t *
ngx_quic_add_path(ngx_connection_t *c, struct sockaddr *sockaddr,
    socklen_t socklen)
{
    ngx_quic_path_t        *path;
    ngx_quic_connection_t  *qc;

    qc = ngx_quic_get_connection(c);

    path = ngx_quic_alloc_path(c);
    if (path == NULL) {
        return NULL;
    }

    path->state = NGX_QUIC_PATH_NEW;
    path->limited = 1;

    path->seqnum = qc->path_seqnum++;
    path->last_seen = ngx_current_msec;

    path->socklen = socklen;
    ngx_memcpy(path->sockaddr, sockaddr, socklen);

    path->addr_text.data = path->text;
    path->addr_text.len = ngx_sock_ntop(sockaddr, socklen, path->text,
                                        NGX_SOCKADDR_STRLEN, 1);

    ngx_queue_insert_tail(&qc->paths, &path->queue);

    ngx_log_debug2(NGX_LOG_DEBUG_EVENT, c->log, 0,
                   "quic path #%uL created src:%V",
                   path->seqnum, &path->addr_text);

    return path;
}


ngx_quic_path_t *
ngx_quic_find_path(ngx_connection_t *c, struct sockaddr *sockaddr,
    socklen_t socklen)
{
    ngx_queue_t            *q;
    ngx_quic_path_t        *path;
    ngx_quic_connection_t  *qc;

    qc = ngx_quic_get_connection(c);

    for (q = ngx_queue_head(&qc->paths);
         q != ngx_queue_sentinel(&qc->paths);
         q = ngx_queue_next(q))
    {
        path = ngx_queue_data(q, ngx_quic_path_t, queue);

        if (ngx_cmp_sockaddr(sockaddr, socklen,
                             path->sockaddr, path->socklen, 1)
            == NGX_OK)
        {
            return path;
        }
    }

    return NULL;
}


ngx_int_t
ngx_quic_update_paths(ngx_connection_t *c, ngx_quic_header_t *pkt)
{
    off_t                   len;
    ngx_quic_path_t        *path;
    ngx_quic_socket_t      *qsock;
    ngx_quic_client_id_t   *cid;
    ngx_quic_connection_t  *qc;

    qc = ngx_quic_get_connection(c);
    qsock = ngx_quic_get_socket(c);

    if (c->udp->dgram == NULL) {
        /* 1st ever packet in connection, path already exists */
        path = qsock->path;
        goto update;
    }

    path = ngx_quic_find_path(c, c->udp->dgram->sockaddr,
                              c->udp->dgram->socklen);

    if (path == NULL) {
        path = ngx_quic_add_path(c, c->udp->dgram->sockaddr,
                                 c->udp->dgram->socklen);
        if (path == NULL) {
            return NGX_ERROR;
        }

        if (qsock->path) {
            /* NAT rebinding case: packet to same CID, but from new address */

            ngx_quic_unref_path(c, qsock->path);

            qsock->path = path;
            path->refcnt++;

            goto update;
        }

    } else if (qsock->path) {
        goto update;
    }

    /* prefer unused client IDs if available */
    cid = ngx_quic_next_client_id(c);
    if (cid == NULL) {

        /* try to reuse connection ID used on the same path */
        cid = ngx_quic_used_client_id(c, path);
        if (cid == NULL) {

            qc->error = NGX_QUIC_ERR_CONNECTION_ID_LIMIT_ERROR;
            qc->error_reason = "no available client ids for new path";

            ngx_log_error(NGX_LOG_ERR, c->log, 0,
                          "no available client ids for new path");

            return NGX_ERROR;
        }
    }

    ngx_quic_connect(c, qsock, path, cid);

update:

    if (path->state != NGX_QUIC_PATH_NEW) {
        /* force limits/revalidation for paths that were not seen recently */
        if (ngx_current_msec - path->last_seen > qc->tp.max_idle_timeout) {
            path->state = NGX_QUIC_PATH_NEW;
            path->limited = 1;
            path->sent = 0;
            path->received = 0;
        }
    }

    path->last_seen = ngx_current_msec;

    len = pkt->raw->last - pkt->raw->start;

    /* TODO: this may be too late in some cases;
     *       for example, if error happens during decrypt(), we cannot
     *       send CC, if error happens in 1st packet, due to amplification
     *       limit, because path->received = 0
     *
     *       should we account garbage as received or only decrypting packets?
     */
    path->received += len;

    ngx_log_debug7(NGX_LOG_DEBUG_EVENT, c->log, 0,
                   "quic packet via #%uL:%uL:%uL"
                   " size:%O path recvd:%O sent:%O limited:%ui",
                   qsock->sid.seqnum, qsock->cid->seqnum, path->seqnum,
                   len, path->received, path->sent, path->limited);

    return NGX_OK;
}


static void
ngx_quic_set_connection_path(ngx_connection_t *c, ngx_quic_path_t *path)
{
    size_t  len;

    ngx_memcpy(c->sockaddr, path->sockaddr,  path->socklen);
    c->socklen = path->socklen;

    if (c->addr_text.data) {
        len = ngx_min(c->addr_text.len, path->addr_text.len);

        ngx_memcpy(c->addr_text.data, path->addr_text.data, len);
        c->addr_text.len = len;
    }

    ngx_log_debug2(NGX_LOG_DEBUG_EVENT, c->log, 0,
                   "quic send path set to #%uL addr:%V",
                   path->seqnum, &path->addr_text);
}


ngx_int_t
ngx_quic_handle_migration(ngx_connection_t *c, ngx_quic_header_t *pkt)
{
    ngx_quic_path_t        *next;
    ngx_quic_socket_t      *qsock;
    ngx_quic_send_ctx_t    *ctx;
    ngx_quic_connection_t  *qc;

    /* got non-probing packet via non-active socket with different path */

    qc = ngx_quic_get_connection(c);

    /* current socket, different from active */
    qsock = ngx_quic_get_socket(c);

    next = qsock->path; /* going to migrate to this path... */

    ngx_log_error(NGX_LOG_INFO, c->log, 0,
                   "quic migration from #%uL:%uL:%uL (%s)"
                   " to #%uL:%uL:%uL (%s)",
                   qc->socket->sid.seqnum, qc->socket->cid->seqnum,
                   qc->socket->path->seqnum,
                   ngx_quic_path_state_str(qc->socket->path),
                   qsock->sid.seqnum, qsock->cid->seqnum, next->seqnum,
                   ngx_quic_path_state_str(next));

    if (next->state == NGX_QUIC_PATH_NEW) {
        if (ngx_quic_validate_path(c, qsock->path) != NGX_OK) {
            return NGX_ERROR;
        }
    }

    ctx = ngx_quic_get_send_ctx(qc, pkt->level);

    /*
     * RFC 9000, 9.3.  Responding to Connection Migration
     *
     * An endpoint only changes the address to which it sends packets in
     * response to the highest-numbered non-probing packet.
     */
    if (pkt->pn != ctx->largest_pn) {
        return NGX_OK;
    }

    /* switching connection to new path */

    ngx_quic_set_connection_path(c, next);

    /*
     * RFC 9000, 9.5.  Privacy Implications of Connection Migration
     *
     * An endpoint MUST NOT reuse a connection ID when sending to
     * more than one destination address.
     */

    /* preserve valid path we are migrating from */
    if (qc->socket->path->state == NGX_QUIC_PATH_VALIDATED) {

        if (qc->backup) {
            ngx_quic_close_socket(c, qc->backup);
        }

        qc->backup = qc->socket;

        ngx_log_error(NGX_LOG_INFO, c->log, 0,
                   "quic backup socket is now #%uL:%uL:%uL (%s)",
                   qc->backup->sid.seqnum, qc->backup->cid->seqnum,
                   qc->backup->path->seqnum,
                   ngx_quic_path_state_str(qc->backup->path));
    }

    qc->socket = qsock;

    ngx_log_error(NGX_LOG_INFO, c->log, 0,
                   "quic active socket is now #%uL:%uL:%uL (%s)",
                   qsock->sid.seqnum, qsock->cid->seqnum,
                   qsock->path->seqnum, ngx_quic_path_state_str(qsock->path));

    return NGX_OK;
}


static ngx_int_t
ngx_quic_validate_path(ngx_connection_t *c, ngx_quic_path_t *path)
{
    ngx_msec_t              pto;
    ngx_quic_send_ctx_t    *ctx;
    ngx_quic_connection_t  *qc;

    qc = ngx_quic_get_connection(c);

    ngx_log_debug1(NGX_LOG_DEBUG_EVENT, c->log, 0,
                   "quic initiated validation of new path #%uL",
                   path->seqnum);

    path->state = NGX_QUIC_PATH_VALIDATING;

    if (RAND_bytes(path->challenge1, 8) != 1) {
        return NGX_ERROR;
    }

    if (RAND_bytes(path->challenge2, 8) != 1) {
        return NGX_ERROR;
    }

    if (ngx_quic_send_path_challenge(c, path) != NGX_OK) {
        return NGX_ERROR;
    }

    ctx = ngx_quic_get_send_ctx(qc, ssl_encryption_application);
    pto = ngx_quic_pto(c, ctx);

    path->expires = ngx_current_msec + pto;
    path->tries = NGX_QUIC_PATH_RETRIES;

    if (!qc->path_validation.timer_set) {
        ngx_add_timer(&qc->path_validation, pto);
    }

    return NGX_OK;
}


static ngx_int_t
ngx_quic_send_path_challenge(ngx_connection_t *c, ngx_quic_path_t *path)
{
    ngx_quic_frame_t  frame;

    ngx_log_debug2(NGX_LOG_DEBUG_EVENT, c->log, 0,
                   "quic path #%uL send path challenge tries:%ui",
                   path->seqnum, path->tries);

    ngx_memzero(&frame, sizeof(ngx_quic_frame_t));

    frame.level = ssl_encryption_application;
    frame.type = NGX_QUIC_FT_PATH_CHALLENGE;

    ngx_memcpy(frame.u.path_challenge.data, path->challenge1, 8);

    /*
     * RFC 9000, 8.2.1.  Initiating Path Validation
     *
     * An endpoint MUST expand datagrams that contain a PATH_CHALLENGE frame
     * to at least the smallest allowed maximum datagram size of 1200 bytes,
     * unless the anti-amplification limit for the path does not permit
     * sending a datagram of this size.
     */

     /* same applies to PATH_RESPONSE frames */
    if (ngx_quic_frame_sendto(c, &frame, 1200, path) != NGX_OK) {
        return NGX_ERROR;
    }

    ngx_memcpy(frame.u.path_challenge.data, path->challenge2, 8);

    if (ngx_quic_frame_sendto(c, &frame, 1200, path) != NGX_OK) {
        return NGX_ERROR;
    }

    return NGX_OK;
}


void
ngx_quic_path_validation_handler(ngx_event_t *ev)
{
    ngx_msec_t              now;
    ngx_queue_t            *q;
    ngx_msec_int_t          left, next, pto;
    ngx_quic_path_t        *path;
    ngx_connection_t       *c;
    ngx_quic_send_ctx_t    *ctx;
    ngx_quic_connection_t  *qc;

    c = ev->data;
    qc = ngx_quic_get_connection(c);

    ctx = ngx_quic_get_send_ctx(qc, ssl_encryption_application);
    pto = ngx_quic_pto(c, ctx);

    next = -1;
    now = ngx_current_msec;

    for (q = ngx_queue_head(&qc->paths);
         q != ngx_queue_sentinel(&qc->paths);
         q = ngx_queue_next(q))
    {
        path = ngx_queue_data(q, ngx_quic_path_t, queue);

        if (path->state != NGX_QUIC_PATH_VALIDATING) {
            continue;
        }

        left = path->expires - now;

        if (left > 0) {

            if (next == -1 || left < next) {
                next = path->expires;
            }

            continue;
        }

        if (--path->tries) {
            path->expires = ngx_current_msec + pto;

            if (next == -1 || pto < next) {
                next = pto;
            }

            /* retransmit */
            (void) ngx_quic_send_path_challenge(c, path);

            continue;
        }

        ngx_log_debug1(NGX_LOG_DEBUG_EVENT, ev->log, 0,
                       "quic path #%uL validation failed", path->seqnum);

        /* found expired path */

        path->state = NGX_QUIC_PATH_NEW;
        path->limited = 1;

        /*
         * RFC 9000, 9.4.  Loss Detection and Congestion Control
         *
         * If the timer fires before the PATH_RESPONSE is received, the
         * endpoint might send a new PATH_CHALLENGE and restart the timer for
         * a longer period of time.  This timer SHOULD be set as described in
         * Section 6.2.1 of [QUIC-RECOVERY] and MUST NOT be more aggressive.
         */

        if (qc->socket->path != path) {
            /* the path was not actually used */
            continue;
        }

        if (ngx_quic_path_restore(c) != NGX_OK) {
            qc->error = NGX_QUIC_ERR_NO_VIABLE_PATH;
            qc->error_reason = "no viable path";
            ngx_quic_close_connection(c, NGX_ERROR);
            return;
        }
    }

    if (next != -1) {
        ngx_add_timer(&qc->path_validation, next);
    }
}


static ngx_int_t
ngx_quic_path_restore(ngx_connection_t *c)
{
    ngx_quic_socket_t      *qsock;
    ngx_quic_connection_t  *qc;

    qc = ngx_quic_get_connection(c);

    /*
     * RFC 9000, 9.1.  Probing a New Path
     *
     * Failure to validate a path does not cause the connection to end
     *
     * RFC 9000, 9.3.2.  On-Path Address Spoofing
     *
     * To protect the connection from failing due to such a spurious
     * migration, an endpoint MUST revert to using the last validated
     * peer address when validation of a new peer address fails.
     */

    if (qc->backup == NULL) {
        return NGX_ERROR;
    }

    qc->socket = qc->backup;
    qc->backup = NULL;

    qsock = qc->socket;

    ngx_log_error(NGX_LOG_INFO, c->log, 0,
                   "quic active socket is restored to #%uL:%uL:%uL"
                   " (%s), no backup",
                   qsock->sid.seqnum, qsock->cid->seqnum, qsock->path->seqnum,
                   ngx_quic_path_state_str(qsock->path));

    ngx_quic_set_connection_path(c, qsock->path);

    return NGX_OK;
}