view src/os/unix/ngx_gcc_atomic_ppc.h @ 7623:72b792bb3885

HTTP/2: fixed socket leak with an incomplete HEADERS frame. A connection could get stuck without timers if a client has partially sent the HEADERS frame such that it was split on the individual header boundary. In this case, it cannot be processed without the rest of the HEADERS frame. The fix is to call ngx_http_v2_state_headers_save() in this case. Normally, it would be called from the ngx_http_v2_state_header_block() handler on the next iteration, when there is not enough data to continue processing. This isn't the case if recv_buffer became empty and there's no more data to read.
author Sergey Kandaurov <pluknet@nginx.com>
date Wed, 05 Feb 2020 16:29:23 +0300
parents d620f497c50f
children
line wrap: on
line source


/*
 * Copyright (C) Igor Sysoev
 * Copyright (C) Nginx, Inc.
 */


/*
 * The ppc assembler treats ";" as comment, so we have to use "\n".
 * The minus in "bne-" is a hint for the branch prediction unit that
 * this branch is unlikely to be taken.
 * The "1b" means the nearest backward label "1" and the "1f" means
 * the nearest forward label "1".
 *
 * The "b" means that the base registers can be used only, i.e.
 * any register except r0.  The r0 register always has a zero value and
 * could not be used in "addi  r0, r0, 1".
 * The "=&b" means that no input registers can be used.
 *
 * "sync"    read and write barriers
 * "isync"   read barrier, is faster than "sync"
 * "eieio"   write barrier, is faster than "sync"
 * "lwsync"  write barrier, is faster than "eieio" on ppc64
 */

#if (NGX_PTR_SIZE == 8)

static ngx_inline ngx_atomic_uint_t
ngx_atomic_cmp_set(ngx_atomic_t *lock, ngx_atomic_uint_t old,
    ngx_atomic_uint_t set)
{
    ngx_atomic_uint_t  res, temp;

    __asm__ volatile (

    "    li      %0, 0       \n" /* preset "0" to "res"                      */
    "    lwsync              \n" /* write barrier                            */
    "1:                      \n"
    "    ldarx   %1, 0, %2   \n" /* load from [lock] into "temp"             */
                                 /*   and store reservation                  */
    "    cmpd    %1, %3      \n" /* compare "temp" and "old"                 */
    "    bne-    2f          \n" /* not equal                                */
    "    stdcx.  %4, 0, %2   \n" /* store "set" into [lock] if reservation   */
                                 /*   is not cleared                         */
    "    bne-    1b          \n" /* the reservation was cleared              */
    "    isync               \n" /* read barrier                             */
    "    li      %0, 1       \n" /* set "1" to "res"                         */
    "2:                      \n"

    : "=&b" (res), "=&b" (temp)
    : "b" (lock), "b" (old), "b" (set)
    : "cc", "memory");

    return res;
}


static ngx_inline ngx_atomic_int_t
ngx_atomic_fetch_add(ngx_atomic_t *value, ngx_atomic_int_t add)
{
    ngx_atomic_uint_t  res, temp;

    __asm__ volatile (

    "    lwsync              \n" /* write barrier                            */
    "1:  ldarx   %0, 0, %2   \n" /* load from [value] into "res"             */
                                 /*   and store reservation                  */
    "    add     %1, %0, %3  \n" /* "res" + "add" store in "temp"            */
    "    stdcx.  %1, 0, %2   \n" /* store "temp" into [value] if reservation */
                                 /*   is not cleared                         */
    "    bne-    1b          \n" /* try again if reservation was cleared     */
    "    isync               \n" /* read barrier                             */

    : "=&b" (res), "=&b" (temp)
    : "b" (value), "b" (add)
    : "cc", "memory");

    return res;
}


#if (NGX_SMP)
#define ngx_memory_barrier()                                                  \
    __asm__ volatile ("isync  \n  lwsync  \n" ::: "memory")
#else
#define ngx_memory_barrier()   __asm__ volatile ("" ::: "memory")
#endif

#else

static ngx_inline ngx_atomic_uint_t
ngx_atomic_cmp_set(ngx_atomic_t *lock, ngx_atomic_uint_t old,
    ngx_atomic_uint_t set)
{
    ngx_atomic_uint_t  res, temp;

    __asm__ volatile (

    "    li      %0, 0       \n" /* preset "0" to "res"                      */
    "    eieio               \n" /* write barrier                            */
    "1:                      \n"
    "    lwarx   %1, 0, %2   \n" /* load from [lock] into "temp"             */
                                 /*   and store reservation                  */
    "    cmpw    %1, %3      \n" /* compare "temp" and "old"                 */
    "    bne-    2f          \n" /* not equal                                */
    "    stwcx.  %4, 0, %2   \n" /* store "set" into [lock] if reservation   */
                                 /*   is not cleared                         */
    "    bne-    1b          \n" /* the reservation was cleared              */
    "    isync               \n" /* read barrier                             */
    "    li      %0, 1       \n" /* set "1" to "res"                         */
    "2:                      \n"

    : "=&b" (res), "=&b" (temp)
    : "b" (lock), "b" (old), "b" (set)
    : "cc", "memory");

    return res;
}


static ngx_inline ngx_atomic_int_t
ngx_atomic_fetch_add(ngx_atomic_t *value, ngx_atomic_int_t add)
{
    ngx_atomic_uint_t  res, temp;

    __asm__ volatile (

    "    eieio               \n" /* write barrier                            */
    "1:  lwarx   %0, 0, %2   \n" /* load from [value] into "res"             */
                                 /*   and store reservation                  */
    "    add     %1, %0, %3  \n" /* "res" + "add" store in "temp"            */
    "    stwcx.  %1, 0, %2   \n" /* store "temp" into [value] if reservation */
                                 /*   is not cleared                         */
    "    bne-    1b          \n" /* try again if reservation was cleared     */
    "    isync               \n" /* read barrier                             */

    : "=&b" (res), "=&b" (temp)
    : "b" (value), "b" (add)
    : "cc", "memory");

    return res;
}


#if (NGX_SMP)
#define ngx_memory_barrier()                                                  \
    __asm__ volatile ("isync  \n  eieio  \n" ::: "memory")
#else
#define ngx_memory_barrier()   __asm__ volatile ("" ::: "memory")
#endif

#endif


#define ngx_cpu_pause()