view src/core/ngx_rbtree.h @ 6874:7cc2d3a96ea3

Fixed trailer construction with limit on FreeBSD and macOS. The ngx_chain_coalesce_file() function may produce more bytes to send then requested in the limit passed, as it aligns the last file position to send to memory page boundary. As a result, (limit - send) may become negative. This resulted in big positive number when converted to size_t while calling ngx_output_chain_to_iovec(). Another part of the problem is in ngx_chain_coalesce_file(): it changes cl to the next chain link even if the current buffer is only partially sent due to limit. Therefore, if a file buffer was not expected to be fully sent due to limit, and was followed by a memory buffer, nginx called sendfile() with a part of the file buffer, and the memory buffer in trailer. If there were enough room in the socket buffer, this resulted in a part of the file buffer being skipped, and corresponding part of the memory buffer sent instead. The bug was introduced in 8e903522c17a (1.7.8). Configurations affected are ones using limits, that is, limit_rate and/or sendfile_max_chunk, and memory buffers after file ones (may happen when using subrequests or with proxying with disk buffering). Fix is to explicitly check if (send < limit) before constructing trailer with ngx_output_chain_to_iovec(). Additionally, ngx_chain_coalesce_file() was modified to preserve unfinished file buffers in cl.
author Maxim Dounin <mdounin@mdounin.ru>
date Fri, 20 Jan 2017 21:12:48 +0300
parents 1f513d7f1b45
children e0cc454aafe4
line wrap: on
line source


/*
 * Copyright (C) Igor Sysoev
 * Copyright (C) Nginx, Inc.
 */


#ifndef _NGX_RBTREE_H_INCLUDED_
#define _NGX_RBTREE_H_INCLUDED_


#include <ngx_config.h>
#include <ngx_core.h>


typedef ngx_uint_t  ngx_rbtree_key_t;
typedef ngx_int_t   ngx_rbtree_key_int_t;


typedef struct ngx_rbtree_node_s  ngx_rbtree_node_t;

struct ngx_rbtree_node_s {
    ngx_rbtree_key_t       key;
    ngx_rbtree_node_t     *left;
    ngx_rbtree_node_t     *right;
    ngx_rbtree_node_t     *parent;
    u_char                 color;
    u_char                 data;
};


typedef struct ngx_rbtree_s  ngx_rbtree_t;

typedef void (*ngx_rbtree_insert_pt) (ngx_rbtree_node_t *root,
    ngx_rbtree_node_t *node, ngx_rbtree_node_t *sentinel);

struct ngx_rbtree_s {
    ngx_rbtree_node_t     *root;
    ngx_rbtree_node_t     *sentinel;
    ngx_rbtree_insert_pt   insert;
};


#define ngx_rbtree_init(tree, s, i)                                           \
    ngx_rbtree_sentinel_init(s);                                              \
    (tree)->root = s;                                                         \
    (tree)->sentinel = s;                                                     \
    (tree)->insert = i


void ngx_rbtree_insert(ngx_rbtree_t *tree, ngx_rbtree_node_t *node);
void ngx_rbtree_delete(ngx_rbtree_t *tree, ngx_rbtree_node_t *node);
void ngx_rbtree_insert_value(ngx_rbtree_node_t *root, ngx_rbtree_node_t *node,
    ngx_rbtree_node_t *sentinel);
void ngx_rbtree_insert_timer_value(ngx_rbtree_node_t *root,
    ngx_rbtree_node_t *node, ngx_rbtree_node_t *sentinel);


#define ngx_rbt_red(node)               ((node)->color = 1)
#define ngx_rbt_black(node)             ((node)->color = 0)
#define ngx_rbt_is_red(node)            ((node)->color)
#define ngx_rbt_is_black(node)          (!ngx_rbt_is_red(node))
#define ngx_rbt_copy_color(n1, n2)      (n1->color = n2->color)


/* a sentinel must be black */

#define ngx_rbtree_sentinel_init(node)  ngx_rbt_black(node)


static ngx_inline ngx_rbtree_node_t *
ngx_rbtree_min(ngx_rbtree_node_t *node, ngx_rbtree_node_t *sentinel)
{
    while (node->left != sentinel) {
        node = node->left;
    }

    return node;
}


#endif /* _NGX_RBTREE_H_INCLUDED_ */