view src/core/ngx_md5.c @ 7570:d6cf51af8a3d

HTTP/2: fixed possible alert about left open socket on shutdown. This could happen when graceful shutdown configured by worker_shutdown_timeout times out and is then followed by another timeout such as proxy_read_timeout. In this case, the HEADERS frame is added to the output queue, but attempt to send it fails (due to c->error forcibly set during graceful shutdown timeout). This triggers request finalization which attempts to close the stream. But the stream cannot be closed because there is a frame in the output queue, and the connection cannot be finalized. This leaves the connection open without any timer events leading to alert. The fix is to post write event when sending output queue fails on c->error. That will finalize the connection.
author Ruslan Ermilov <ru@nginx.com>
date Mon, 23 Sep 2019 15:45:32 +0300
parents 9eefb38f0005
children
line wrap: on
line source


/*
 * An internal implementation, based on Alexander Peslyak's
 * public domain implementation:
 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
 */


#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_md5.h>


static const u_char *ngx_md5_body(ngx_md5_t *ctx, const u_char *data,
    size_t size);


void
ngx_md5_init(ngx_md5_t *ctx)
{
    ctx->a = 0x67452301;
    ctx->b = 0xefcdab89;
    ctx->c = 0x98badcfe;
    ctx->d = 0x10325476;

    ctx->bytes = 0;
}


void
ngx_md5_update(ngx_md5_t *ctx, const void *data, size_t size)
{
    size_t  used, free;

    used = (size_t) (ctx->bytes & 0x3f);
    ctx->bytes += size;

    if (used) {
        free = 64 - used;

        if (size < free) {
            ngx_memcpy(&ctx->buffer[used], data, size);
            return;
        }

        ngx_memcpy(&ctx->buffer[used], data, free);
        data = (u_char *) data + free;
        size -= free;
        (void) ngx_md5_body(ctx, ctx->buffer, 64);
    }

    if (size >= 64) {
        data = ngx_md5_body(ctx, data, size & ~(size_t) 0x3f);
        size &= 0x3f;
    }

    ngx_memcpy(ctx->buffer, data, size);
}


void
ngx_md5_final(u_char result[16], ngx_md5_t *ctx)
{
    size_t  used, free;

    used = (size_t) (ctx->bytes & 0x3f);

    ctx->buffer[used++] = 0x80;

    free = 64 - used;

    if (free < 8) {
        ngx_memzero(&ctx->buffer[used], free);
        (void) ngx_md5_body(ctx, ctx->buffer, 64);
        used = 0;
        free = 64;
    }

    ngx_memzero(&ctx->buffer[used], free - 8);

    ctx->bytes <<= 3;
    ctx->buffer[56] = (u_char) ctx->bytes;
    ctx->buffer[57] = (u_char) (ctx->bytes >> 8);
    ctx->buffer[58] = (u_char) (ctx->bytes >> 16);
    ctx->buffer[59] = (u_char) (ctx->bytes >> 24);
    ctx->buffer[60] = (u_char) (ctx->bytes >> 32);
    ctx->buffer[61] = (u_char) (ctx->bytes >> 40);
    ctx->buffer[62] = (u_char) (ctx->bytes >> 48);
    ctx->buffer[63] = (u_char) (ctx->bytes >> 56);

    (void) ngx_md5_body(ctx, ctx->buffer, 64);

    result[0] = (u_char) ctx->a;
    result[1] = (u_char) (ctx->a >> 8);
    result[2] = (u_char) (ctx->a >> 16);
    result[3] = (u_char) (ctx->a >> 24);
    result[4] = (u_char) ctx->b;
    result[5] = (u_char) (ctx->b >> 8);
    result[6] = (u_char) (ctx->b >> 16);
    result[7] = (u_char) (ctx->b >> 24);
    result[8] = (u_char) ctx->c;
    result[9] = (u_char) (ctx->c >> 8);
    result[10] = (u_char) (ctx->c >> 16);
    result[11] = (u_char) (ctx->c >> 24);
    result[12] = (u_char) ctx->d;
    result[13] = (u_char) (ctx->d >> 8);
    result[14] = (u_char) (ctx->d >> 16);
    result[15] = (u_char) (ctx->d >> 24);

    ngx_memzero(ctx, sizeof(*ctx));
}


/*
 * The basic MD5 functions.
 *
 * F and G are optimized compared to their RFC 1321 definitions for
 * architectures that lack an AND-NOT instruction, just like in
 * Colin Plumb's implementation.
 */

#define F(x, y, z)  ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z)  ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z)  ((x) ^ (y) ^ (z))
#define I(x, y, z)  ((y) ^ ((x) | ~(z)))

/*
 * The MD5 transformation for all four rounds.
 */

#define STEP(f, a, b, c, d, x, t, s)                                          \
    (a) += f((b), (c), (d)) + (x) + (t);                                      \
    (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s))));                \
    (a) += (b)

/*
 * SET() reads 4 input bytes in little-endian byte order and stores them
 * in a properly aligned word in host byte order.
 *
 * The check for little-endian architectures that tolerate unaligned
 * memory accesses is just an optimization.  Nothing will break if it
 * does not work.
 */

#if (NGX_HAVE_LITTLE_ENDIAN && NGX_HAVE_NONALIGNED)

#define SET(n)      (*(uint32_t *) &p[n * 4])
#define GET(n)      (*(uint32_t *) &p[n * 4])

#else

#define SET(n)                                                                \
    (block[n] =                                                               \
    (uint32_t) p[n * 4] |                                                     \
    ((uint32_t) p[n * 4 + 1] << 8) |                                          \
    ((uint32_t) p[n * 4 + 2] << 16) |                                         \
    ((uint32_t) p[n * 4 + 3] << 24))

#define GET(n)      block[n]

#endif


/*
 * This processes one or more 64-byte data blocks, but does not update
 * the bit counters.  There are no alignment requirements.
 */

static const u_char *
ngx_md5_body(ngx_md5_t *ctx, const u_char *data, size_t size)
{
    uint32_t       a, b, c, d;
    uint32_t       saved_a, saved_b, saved_c, saved_d;
    const u_char  *p;
#if !(NGX_HAVE_LITTLE_ENDIAN && NGX_HAVE_NONALIGNED)
    uint32_t       block[16];
#endif

    p = data;

    a = ctx->a;
    b = ctx->b;
    c = ctx->c;
    d = ctx->d;

    do {
        saved_a = a;
        saved_b = b;
        saved_c = c;
        saved_d = d;

        /* Round 1 */

        STEP(F, a, b, c, d, SET(0),  0xd76aa478, 7);
        STEP(F, d, a, b, c, SET(1),  0xe8c7b756, 12);
        STEP(F, c, d, a, b, SET(2),  0x242070db, 17);
        STEP(F, b, c, d, a, SET(3),  0xc1bdceee, 22);
        STEP(F, a, b, c, d, SET(4),  0xf57c0faf, 7);
        STEP(F, d, a, b, c, SET(5),  0x4787c62a, 12);
        STEP(F, c, d, a, b, SET(6),  0xa8304613, 17);
        STEP(F, b, c, d, a, SET(7),  0xfd469501, 22);
        STEP(F, a, b, c, d, SET(8),  0x698098d8, 7);
        STEP(F, d, a, b, c, SET(9),  0x8b44f7af, 12);
        STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17);
        STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22);
        STEP(F, a, b, c, d, SET(12), 0x6b901122, 7);
        STEP(F, d, a, b, c, SET(13), 0xfd987193, 12);
        STEP(F, c, d, a, b, SET(14), 0xa679438e, 17);
        STEP(F, b, c, d, a, SET(15), 0x49b40821, 22);

        /* Round 2 */

        STEP(G, a, b, c, d, GET(1),  0xf61e2562, 5);
        STEP(G, d, a, b, c, GET(6),  0xc040b340, 9);
        STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14);
        STEP(G, b, c, d, a, GET(0),  0xe9b6c7aa, 20);
        STEP(G, a, b, c, d, GET(5),  0xd62f105d, 5);
        STEP(G, d, a, b, c, GET(10), 0x02441453, 9);
        STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14);
        STEP(G, b, c, d, a, GET(4),  0xe7d3fbc8, 20);
        STEP(G, a, b, c, d, GET(9),  0x21e1cde6, 5);
        STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9);
        STEP(G, c, d, a, b, GET(3),  0xf4d50d87, 14);
        STEP(G, b, c, d, a, GET(8),  0x455a14ed, 20);
        STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5);
        STEP(G, d, a, b, c, GET(2),  0xfcefa3f8, 9);
        STEP(G, c, d, a, b, GET(7),  0x676f02d9, 14);
        STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20);

        /* Round 3 */

        STEP(H, a, b, c, d, GET(5),  0xfffa3942, 4);
        STEP(H, d, a, b, c, GET(8),  0x8771f681, 11);
        STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16);
        STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23);
        STEP(H, a, b, c, d, GET(1),  0xa4beea44, 4);
        STEP(H, d, a, b, c, GET(4),  0x4bdecfa9, 11);
        STEP(H, c, d, a, b, GET(7),  0xf6bb4b60, 16);
        STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23);
        STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4);
        STEP(H, d, a, b, c, GET(0),  0xeaa127fa, 11);
        STEP(H, c, d, a, b, GET(3),  0xd4ef3085, 16);
        STEP(H, b, c, d, a, GET(6),  0x04881d05, 23);
        STEP(H, a, b, c, d, GET(9),  0xd9d4d039, 4);
        STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11);
        STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16);
        STEP(H, b, c, d, a, GET(2),  0xc4ac5665, 23);

        /* Round 4 */

        STEP(I, a, b, c, d, GET(0),  0xf4292244, 6);
        STEP(I, d, a, b, c, GET(7),  0x432aff97, 10);
        STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15);
        STEP(I, b, c, d, a, GET(5),  0xfc93a039, 21);
        STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6);
        STEP(I, d, a, b, c, GET(3),  0x8f0ccc92, 10);
        STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15);
        STEP(I, b, c, d, a, GET(1),  0x85845dd1, 21);
        STEP(I, a, b, c, d, GET(8),  0x6fa87e4f, 6);
        STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10);
        STEP(I, c, d, a, b, GET(6),  0xa3014314, 15);
        STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21);
        STEP(I, a, b, c, d, GET(4),  0xf7537e82, 6);
        STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10);
        STEP(I, c, d, a, b, GET(2),  0x2ad7d2bb, 15);
        STEP(I, b, c, d, a, GET(9),  0xeb86d391, 21);

        a += saved_a;
        b += saved_b;
        c += saved_c;
        d += saved_d;

        p += 64;

    } while (size -= 64);

    ctx->a = a;
    ctx->b = b;
    ctx->c = c;
    ctx->d = d;

    return p;
}