view src/os/unix/ngx_process.h @ 7583:efd71d49bde0

Events: available bytes calculation via ioctl(FIONREAD). This makes it possible to avoid looping for a long time while working with a fast enough peer when data are added to the socket buffer faster than we are able to read and process them (ticket #1431). This is basically what we already do on FreeBSD with kqueue, where information about the number of bytes in the socket buffer is returned by the kevent() call. With other event methods rev->available is now set to -1 when the socket is ready for reading. Later in ngx_recv() and ngx_recv_chain(), if full buffer is received, real number of bytes in the socket buffer is retrieved using ioctl(FIONREAD). Reading more than this number of bytes ensures that even with edge-triggered event methods the event will be triggered again, so it is safe to stop processing of the socket and switch to other connections. Using ioctl(FIONREAD) only after reading a full buffer is an optimization. With this approach we only call ioctl(FIONREAD) when there are at least two recv()/readv() calls.
author Maxim Dounin <mdounin@mdounin.ru>
date Thu, 17 Oct 2019 16:02:19 +0300
parents 8b84d60ef13d
children
line wrap: on
line source


/*
 * Copyright (C) Igor Sysoev
 * Copyright (C) Nginx, Inc.
 */


#ifndef _NGX_PROCESS_H_INCLUDED_
#define _NGX_PROCESS_H_INCLUDED_


#include <ngx_setaffinity.h>
#include <ngx_setproctitle.h>


typedef pid_t       ngx_pid_t;

#define NGX_INVALID_PID  -1

typedef void (*ngx_spawn_proc_pt) (ngx_cycle_t *cycle, void *data);

typedef struct {
    ngx_pid_t           pid;
    int                 status;
    ngx_socket_t        channel[2];

    ngx_spawn_proc_pt   proc;
    void               *data;
    char               *name;

    unsigned            respawn:1;
    unsigned            just_spawn:1;
    unsigned            detached:1;
    unsigned            exiting:1;
    unsigned            exited:1;
} ngx_process_t;


typedef struct {
    char         *path;
    char         *name;
    char *const  *argv;
    char *const  *envp;
} ngx_exec_ctx_t;


#define NGX_MAX_PROCESSES         1024

#define NGX_PROCESS_NORESPAWN     -1
#define NGX_PROCESS_JUST_SPAWN    -2
#define NGX_PROCESS_RESPAWN       -3
#define NGX_PROCESS_JUST_RESPAWN  -4
#define NGX_PROCESS_DETACHED      -5


#define ngx_getpid   getpid
#define ngx_getppid  getppid

#ifndef ngx_log_pid
#define ngx_log_pid  ngx_pid
#endif


ngx_pid_t ngx_spawn_process(ngx_cycle_t *cycle,
    ngx_spawn_proc_pt proc, void *data, char *name, ngx_int_t respawn);
ngx_pid_t ngx_execute(ngx_cycle_t *cycle, ngx_exec_ctx_t *ctx);
ngx_int_t ngx_init_signals(ngx_log_t *log);
void ngx_debug_point(void);


#if (NGX_HAVE_SCHED_YIELD)
#define ngx_sched_yield()  sched_yield()
#else
#define ngx_sched_yield()  usleep(1)
#endif


extern int            ngx_argc;
extern char         **ngx_argv;
extern char         **ngx_os_argv;

extern ngx_pid_t      ngx_pid;
extern ngx_pid_t      ngx_parent;
extern ngx_socket_t   ngx_channel;
extern ngx_int_t      ngx_process_slot;
extern ngx_int_t      ngx_last_process;
extern ngx_process_t  ngx_processes[NGX_MAX_PROCESSES];


#endif /* _NGX_PROCESS_H_INCLUDED_ */