view http_header_buffers.t @ 1236:93f749c1d5c5

Tests: fixed parallel tests execution with UDP. Previously, when checking ports availability, a UDP socket was always created first, then a TCP socket was created. On success, one of UDP and TCP sockets was closed (depending on the "udp" option) and the second one was used to busy this port in other scripts. This lead to the following problem: in an attempt to reopen a UDP socket used in a given testing script it could be stolen by another script as part of checking ports availability. To solve this problem, UDP and TCP ports were split into two non-overlapping ranges: TCP ports are only used in the range 8000-8499, and UDP ports - in the range 8500-8999. In addition, the order of creating sockets in UDP tests has been reversed: now a TCP socket used as a lock precedes a UDP socket.
author Andrey Zelenkov <zelenkov@nginx.com>
date Thu, 26 Oct 2017 18:00:21 +0300
parents 66c7dee0431c
children
line wrap: on
line source

#!/usr/bin/perl

# (C) Maxim Dounin
# (C) Nginx, Inc.

# Tests for large_client_header_buffers directive.

###############################################################################

use warnings;
use strict;

use Test::More;

use Socket qw/ CRLF /;

BEGIN { use FindBin; chdir($FindBin::Bin); }

use lib 'lib';
use Test::Nginx;

###############################################################################

select STDERR; $| = 1;
select STDOUT; $| = 1;

my $t = Test::Nginx->new()->has(qw/http rewrite/)->plan(10)
	->write_file_expand('nginx.conf', <<'EOF');

%%TEST_GLOBALS%%

daemon off;

events {
}

http {
    %%TEST_GLOBALS_HTTP%%

    connection_pool_size 128;
    client_header_buffer_size 128;

    server {
        listen       127.0.0.1:8080;
        server_name  five;

        large_client_header_buffers 5 256;

        return 204;
    }

    server {
        listen       127.0.0.1:8080;
        server_name  ten;

        large_client_header_buffers 10 256;

        return 204;
    }

    server {
        listen       127.0.0.1:8080;
        server_name  one;

        large_client_header_buffers 1 256;

        return 204;
    }

    server {
        listen       127.0.0.1:8080;
        server_name  foo;

        large_client_header_buffers 5 256;

        add_header X-URI $uri;
        add_header X-Foo $http_x_foo;
        return 204;
    }
}

EOF

$t->run();

###############################################################################

TODO: {
todo_skip 'overflow', 2 unless $ENV{TEST_NGINX_UNSAFE};

# if hc->busy is allocated before the virtual server is selected,
# and then additional buffers are allocated in a virtual server with larger
# number of buffers configured, hc->busy will be overflowed

like(http(
	"GET / HTTP/1.0" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"Host: ten" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF
), qr/204|400/, 'additional buffers in virtual server');

# for pipelined requests large header buffers are saved to hc->free;
# it sized for number of buffers in the current virtual server, but
# saves previously allocated buffers, and there may be more buffers if
# allocatad before the virtual server was selected

like(http(
	"GET / HTTP/1.1" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"Host: one" . CRLF .
	CRLF .
	"GET / HTTP/1.1" . CRLF .
	"Host: one" . CRLF .
	"Connection: close" . CRLF .
	CRLF
), qr/204/, 'pipelined with too many buffers');

}

# check if long header and long request lines are correctly returned
# when nginx allocates a long header buffer

like(http(
	"GET / HTTP/1.0" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: foo" . ("1234567890" x 20) . "bar" . CRLF .
	CRLF
), qr/X-Foo: foo(1234567890){20}bar/, 'long header');

like(http(
	"GET /foo" . ("1234567890" x 20) . "bar HTTP/1.0" . CRLF .
	"Host: foo" . CRLF .
	CRLF
), qr!X-URI: /foo(1234567890){20}bar!, 'long request line');

# the same as the above, but with pipelining, so there is a buffer
# allocated in the previous request

like(http(
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF .
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"Connection: close" . CRLF .
	"X-Foo: foo" . ("1234567890" x 20) . "bar" . CRLF .
	CRLF
), qr/X-Foo: foo(1234567890){20}bar/, 'long header after pipelining');

like(http(
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF .
	"GET /foo" . ("1234567890" x 20) . "bar HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"Connection: close" . CRLF .
	CRLF
), qr!X-URI: /foo(1234567890){20}bar!, 'long request line after pipelining');

# the same as the above, but with keepalive; this ensures that previously
# allocated buffers are properly cleaned up when we set keepalive handler

like(http(
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF,
sleep => 0.1, body =>
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"Connection: close" . CRLF .
	"X-Foo: foo" . ("1234567890" x 20) . "bar" . CRLF .
	CRLF
), qr/X-Foo: foo(1234567890){20}bar/, 'long header after keepalive');

like(http(
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF,
sleep => 0.1, body =>
	"GET /foo" . ("1234567890" x 20) . "bar HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"Connection: close" . CRLF .
	CRLF
), qr!X-URI: /foo(1234567890){20}bar!, 'long request line after keepalive');

# the same as the above, but with pipelining and then keepalive;
# this ensures that previously allocated buffers are properly cleaned
# up when we set keepalive handler, including hc->free

like(http(
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF .
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF,
sleep => 0.1, body =>
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"Connection: close" . CRLF .
	"X-Foo: foo" . ("1234567890" x 20) . "bar" . CRLF .
	CRLF
), qr/X-Foo: foo(1234567890){20}bar/, 'long header after both');

like(http(
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF .
	"GET / HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"X-Foo: " . ("1234567890" x 20) . CRLF .
	CRLF,
sleep => 0.1, body =>
	"GET /foo" . ("1234567890" x 20) . "bar HTTP/1.1" . CRLF .
	"Host: foo" . CRLF .
	"Connection: close" . CRLF .
	CRLF
), qr!X-URI: /foo(1234567890){20}bar!, 'long request line after both');

###############################################################################